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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATUKALIUM 

1992 Mathematica XXXI Vol.105 

A TRANSMISSION PROBLEM 

Irena Rachůnková 

(Received February 25,1991) 

Abstract. Let I , I. (i-=l,2,3) be compact intervals and 

1=1 U i U l . We consider the equation (D.) u'.'=f.(t,u.,u'.) 
1 2 3 ^ 2 2 2 1 I 

subject to the condition P. on I. for i = l,2,3, where P and P^ 
are boundary or initial conditions and P£ is a transmission 

condition. We prove the existence of a Car-solution to the 

transmission problem (D.,P.;i=l, 2, 3) on I. Our method of proofs 

is based on the topological degree theory. We obtain the 

existence results without growth conditions of Nagumo-Bernstein 

type. 

Key words: transmission condition, four-point, 

Dirichlet and mixed problems, a priori estimates, 

Brouwer degree, the Mawhin Continuation Theorem. 

MS Classification: 34B10, 34B15 

INTRODUCTION 

Notations. Let ICR be a compact interval. We write C*(I) 

for the space of & functions u:I-»IR with the norm 

Hull = E max{ Iu(l)ftjl :tei}, AC^(I) denotes the set of real 
k 

i=o 
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functions having absolutely continuous k-derivatives on J, for 

p*l, LP(I) is the space of functions u:J-»R such that !u!p is 
i/p 

Lebesgue integrable on J with the norm liuii p=( J* I u( t) |pdt) , 
1 

Car(JxR ) signifies the set of functions f:Jx[R->jR satisfying the 

local Caratheodory conditions on Jx|R , i.e. the map t->f(t,x,y) 

is Lebesgue measurable on J for each x,yelR, the map 

(x, y)-*f (t,x, y) is continuous on IR for almost each (a.e.) tej, 

for each p>0 there exists h eL (I) such that 
P 

\x\+\y\<p*\f(t,x,y)\*h (t) for a.e. tej. 

Formulation of Problem. Let a,b,c,d<=lR, a<c^d<b, J=[a,c], 

J =[c,d], J =[d,b], and f .&Car( I .xtR2), i = l,2,3. We consider the 

equation 
rV ui ' f^t.u-.u^) 

subject to the condition P. on J.(i=l,2,3), where P and P are 
1 1 1 3 

boundary or initial conditions and P is a transmission 

condition. 

We shall find conditions for the existence of a function 

uê ic (I), which is a Car-solution to the transmission problem 

(D.,P.; i=l,2,3), i.e. u^u . verifies P. and fulfils (D.) for a.e. 

tej., i = l,2,3. 

Let us suppose that P has one of the three following forms 

(P.1.1) ux(a) = 0, 

(PI.2) u° (a) m o , 

(PI. 3) u^c) - u^a) = 0. 
Similarly for P we will choose one of the forms J 3 

(P3.1) u (b) = °' 

(P3.2) u3(b) = °' 

(P3.3) u (b) - u (d) = 0. 
3 3 

Then, for c<d, P has the form 

u(c)=u(c), u(d)=ujd), 
(P2.1) 1 2 2 3 

u'i(c)=u'2(c), u'2(d)=u'3(d), 
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while, for c=d, it is 

(P2. 2) 
u (c)~u3(c)t u'i(c)^u'3(c) 

(D ) is omitted. 

Let us put f ( t t x , y)=f .(t,xty) for a.e. t&I, and each x.yeiR, 

i=l,2,3, and consider the equation 

(D) u'' = f(t,u,u') on I. 

Clearly r~eCar(lx|R2) and ueAC (I) is a Car-solution to the 

transmission problem (P.,P.;i=l,2,3j, iff u is a Car-solution to 

the boundary value problem (D),P , P . 

1 .AUXILIARY RESULTS 

Problem (D),P ,P will be studied by means of topological 

degree arguments and therefore we remind some notions and 

results (see [1]). 

Let X, Y be real vector normed spaces and do/raLcx a vector 

subspace. A linear map L:domL^Y will be called a Fredholm map of 

index zero , iff dim kerL = codim imL <co and imL is closed in Y. 

If I is a Fredholm map of index zero, then there exist 

continuous projectors P;X-»X and Q:Y-*Y such that 

(1.1) imP^kerL and kerQ=imL 

and X=KerL®KerP, Y=ImL®ImQ as topological direct sums. 

Consequently, the restriction L of L to domLDKerP is one-to-one 
p 

and onto ImL, so that its (algebraic) inverse 

(1.2) K : ImL -» domLriKerP 
p 

i s defined. 

Let L:domL-*Y be a Fredholm map of index zero and let Qcx be 

an open bounded set. A continuous (not necessarily l i n e a r ) map 

N;X->y will be called L-compact on U iff the maps QN:U->X and 

K (I-Q)N : H-»X are compact. 
p 

Note. 

l.H and dQ will denote the closure and the boundary 

of Qcx,respectively. 

2. One can show that L-compactness of N does not depend 

upon the choice of P,Q. 
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3.Since dim kerL * dim imQ «n , there exists an isomorphism 
(1. 3) J: imQ+kerL . 

Let us consider the maps 

N*: nx[0,l]-»r, (x,\)-*N*(x,\) 

with N*(.,1)=N, and 

(1.4) N =JQN*( . ,0): kerL-*kerL. 

Theorem 1 (Mavhin Continuation Theorem). Let L:domL-*Y be 

a Fredholm map of index zero and let Qcx be an open bounded set. 

Let N be L-compact on Ux[0,l]. Suppose 

a) for each \e(0,l), every solution x of Lx=\N (x,\) is such 

that xtdQ, 

b) QN*(x,\)*0 for each xekerLndQ, 

c) the Brouwer degree d[N ,QnkerL,0]*0. 

Then the equation Lx=Nx has at least one solution in domLnTi 

Proof.See [l,p.29]. 

Corollary. Let kerL={0}, let Qcx be an open bounded set 
with Oefi and such that Lx*\N (x,\) for each x&domLndQ and each 
Ae(o,l). Then the equation Lx=Nx has at least one solution 
in domLnU. 

2. A FREDHOLM MAP L 

In what follows let X=Cl(I)f Y=Ll(I), and 

domL={.JfeAC1(I);x satisfies P fP } 

(2.1) L; domL-±Y, x-*x' ' . 

Lemma l.Let i,je{l,2,3} and P=(Pl.i), P3=(P3.j). 

Then L is a Fredholm map of index zero. 

Proof.a) If i=l or j=l, then kerL={0}, L is one-to-one and 

onto Y, so that L is a Fredholm map of index zero. 
b) Now, let i , J € { 2 , 3 } . Then kerL consists of all constant 

functions and therefore 

(2.2) dim kerL = 1 

and imL is the set of all functions yey for which there exist 
functions xedomL verifying the equation x''(t)=y(t) for a.e. tel. 
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Let us put for yeY 

( 2 ' 3 ) V E - I ' r<t)it , 
a 

(2-4> y2>3= (b+d)/2-a [ E-a < * yftwtds ] , 
d a 

( 2 5 > y3>2= W c i a ) / 2 [ e-I * * yftJdtds ] , 
a s 

(2.6) y33= i- [ j-i-f J I yCtjdtds - - ^ M yftjdtds 1, 
' 0 L d a a a J 

where c =Cb+dJ/2 - (c+a)/2. 

o 

Then, for i,je{2,3}, imL={y^Y:y =0}. In all the cases we 

have 

(2.7) dim Y/imL = 1 

An application of the Lebesgue convergence theorem will prove 

that imL is closed in Y for i,je{2,3}. Lemma is proved. • 

3. PROJECTORS P AND Q 

Let P=(Pl.i), P=(P3.j), i,je{l,2,3}. Then, by Lemma 1, there 

exist continuous projectors satisfying (1.1). If i=l or j=l,then 

P=Q=0, where 0 is a zero mapping. Let i = 2, j = {2, 3} or i = 3,j = 3. 

Then we can put 

(3.1) P;X->X, x^x(a); Q:Y->Y, y->y 

For i = 3 , j = 2 we can put 

(3.2) P;X->X, x->x(b); Q:Y^Y, y->y 

We can easily prove the following 

Lemma 2. The maps P,Q defined by (3.1) or (3.2) are 

continuous projectors satisfying (1.1). 

Now, let us consider the Nemyckii operator 

(3.3) N:X->Y, X->f(-tx(),X'(-)) 

Lemma 3. Let Hex be an open bounded set. Let N and Q be the 

maps (3.3) and (3.i), ie{l,2), respectively. 

Then the map QN: U-*Y is compact. 
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Proof, Since Q is bounded and f€Car(lxR2)/ there exists 

heLl(I) such that I f (t,x(t),x' (t) I -sf (t) for a . e . tel, Then, 

using the Lebesgue convergence theorem we get that N is 

c o n t i n u o u s . Moreover, since QN(Hl) is bounded in Y and dim 

imQ = 1 (see ( 2 . 7 ) ) , QN(U) is relatively compact, which 

completes the proof . • 

4. AN INVERSE MAP Kp 

We shall study map (1.2) in the cases P=(Pl.i), P=(P3.J), 

i,j€{l,2,3}. If i = l or J = l, then 

b 

(4.1) K = If1: Y-+domL, y-> I G( t, s)y(s)ds0 
p 

a 

where G is the Green function of the problem 

x"= 0 , (Pl.i), (P3. J), i = l,Je{l,2,3} or J=l,ie{2,3}. 

Let i=2,J={2,3}. Then 
t s 

(4.2) K : imL-xfomLnJcerP, y-» S Iy(r)dTds, 
p 

a a 

For i=3,J=2 we get 

b b 

(4.3) K^ : imL-KlomLnkerP, y-> I lymdrds, 
t s 

P 

Finally, for i=3,J=3 we have 

. c s t s 

(4.4) K : imL-+domLnkerP, y-> - —§ I lymdrds+J Iy(T)drds, 
P c~~a 

a a a a 

Lemma 4. Let i,je{l,2,3} and P=(Pl.i), P^(P3.j). Let 

QcX be an open bounded set and let L and N be the maps (2.1) and 

(3.3), respectively. Then N is L-compact on U. 

Proof. According to Lemma 3 it is sufficient to prove that 

K (I-Q)N:Tl-+X is compact. This assertion can be proved by 

standard arguments using the Lebesgue Convergence Theorem and 

the Arzela-Ascoli Theorem in all the cases i,Je{l,2,3}.• 

Lemma 5. Let flex be an open bounded set and let 

f £Car(Ix.(R2x[0,l])). Then the assertion of Lemma 4 is valid for 

the map 

(4.5) N* : Ux[0,l] -4 Y, (x, \)+f*( • ,x( • ),X' ( •), \). 
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Proof. Lemma 5 can be proved in a similar way as Lemma 4. 

In the space Xx[0,l] we work with the norm B(x,X)l * Uxl i + \) 

5. AUXILIARY THEOREMS OF THE LERAY-SCHAUDER TYPE 

Let us choose a function f*ecar(lx(R2x[o, 1 ]) ) such that 

f*(t,x,y, 1) - f(t,x,y) for a.e. tei and for each x,y e R, 

and consider the set of the equations 

(5. IX) u" * \f*(t,u,u' ,\), X€[0/1]. 

I. A case of non-resonance. 

Theorem 2. Let i=l, je{l,2,3} or j - 1 , i&{2,3} and let 

P =(P1. i), P =(P3. j). Let there exist an open bounded set tlcx 

containing the zero-function and let for each \e(0,l), every 

Car-solution u of the problem (5.1\),P ,P fulfil u £ dQ. 
r 1 3 

Then the problem (D),P ,P has at least one Car-solution 

in H. 

Proof. According to Lemmas 1-5, the assertion of Theorem 2 

follows from Corollary of Part 1, where L and N are given by 

(2.1) and (4.5), respectively.• 

II. A case of resonance. 

Let us put <f>(t,x)*=f*(t,x, 0,0) on IXIR and, for i,je{2,3} 

(5.2) gt (x)=JCx)i , for x«=fc. 

(See (2.3)-(2.6).) 

Theorem 3. Let P=(Pl.i), P-(P3.j) where i, je{2,3}. Let 

there exist an open bounded set Qcx such that 

(a) for any \e(0,l), every Car-solution u of the problem (5.1\), 

P ,P satisfies u€dQ, 

(b) for any root x e|R of the equation g (x)=0, the condition 
x *dQ is fulfilled, where x is considered as a constant 
o o 

function on I, 

(c) the Brouwer degree dig ,h,0]*0, where AcjR is the set of 

such constants c that the constant functions u(t)=c belong to Q. 
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Then the problem (D),P ,P has at least one Car-solution 

in U. 

Proof. According to (3.1),(3.2),(4.5) and ( 5 . 2 ) we have 

QN*(x,0)=g (x), and in view of (1.3), (1.4) and (2.2), N =kg , 
i, J 0 i, j 

where IceiR, k*0. Therefore, by Lemmas 1-5, the conditions of 

Theorem 1 are satisfied, which completes the proof.• 

In the next parts, using Theorem 2 or 3, we shall prove 

existence theorems for the boundary value problems 

(D), (PI. j), (P3. j), where i=j=l or i=l,j-=2 or i=j=3. (The other 

possibilities for i,j could be solved similarly.) 

6. DlRICHLET PROBLEM 

We shall investigate the case of i=j-l, i.e. the Dirichlet 

problem 

(6.1) u''= f(t,u,u') , u(a)=u(b)=0. 

Lemma 6. Let geCarflxiR ) and r,ke(0,oo) be such that 

b 

(6.2) I \g(t,x,y)\dt =£ K for each xe[-r,r], ye|R 
a 

and 

(6.3) g(tt-rfO)^0 , g(t,r,0)*0 fof a.e.tel. 

Then the problem 
(6.4) u''" g(t,u,u') , u(a)=u(b)=0 

has at least one Car-solution u with 
o 

(6.5) f|iiol|sr. 

Proof. For mew l e t us put 

' g(t,r,0) for x>r+l/m 

g(t,r,y)+[g(t,r,0)-g(t,r,y]m(x-r) for r<x^r+l/m 

g (t,x,y)= < g(t,x,y) for -r^x^r 

g(t,-r,y)-[g(t,-r,0)-g(t,-r,y)]m(x+r) for -r-l/m5*<-r 

„ g(tt-r,0) for x<-r-l/m 
and consider the auxiliary problem 
(6.6m) u''* g (t,u,u') , u(a)=u(b)=0. 

m 

Now choose an arbitrary but fixed mew. We shall prove the 

existence of a solution of* (6.6m) by means of Theorem 2 and 
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therefore we need to study the parameter-set of equations 

(6.7X) u''= Xg*(t,u,u' ,X) , u(a)=-u(b)--0, 

where 

g*(t,x,y, Л)=Лg (t,x,y)+(l-Л)x and Лє[0, I V 

Suppose that u is a Car-solution to (6.7A) for some Xe(0,l). 

First, we shall show that 

(6. 8) llull̂ r+l/m. 

Put F(t)-=u(t)-r-l/7n. Then v(a)=v(b)=-r-l/m<0 and u'=v' on J. Let 

us suppose that there exists t e(a,b) such that v(t )>0. Then 
r c
 o o 

there exists te(a,b) such that 0<v(t)=max{i/(t): tej} and v' (t)=0. 
Therefore we can find 6>0 and the interval I =(t-6 ,t+8 )c(a,b) 

o 

such that v'(t-8)2.0, v'(t+S)sO and v(t)*0 for each tel&. From 

this it follows 

v' ' (t)=u''(t)=Xg (t,u,u' ) + (l-X)u=Xg(t,r, 0) + (l-X)u>0 
m 

for a.e. t€j Integrating the last inequality, we get 

0 £ v'(t+S)-v'(t-S) = S v''(t)dt > 0, 

a contradiction. 

So, we have proved v(t)so on I, which means that u(t)sr+l/m on I. 

Similarly, putting v(t)=-r-l/m-u(t), we can prove v(t)^0 on I, 

which means u(t)^-r-l/m on I ( see proof of Lemma 7 ). Hence u 

satisfies (6.8). 

Further we shall estimate u' . Since u(a)=u(b), there exists 

a e(a,Jb) such that u'(a )=0. Integrating (6.7A) from a to t, we 

have 

(6.9) llu'IKKo, 

where KQ = K+(b-a)(r+1). 

Finally, define 

Q={xeX; ||x||<r+2/m , ||jf'|l<JC }. 

Then, by (6.8),(6.9), ufcdQ and according to Theorem 2, problem 

(6.6m) has at least one solution u cH . 

• 

In this way, we can get the sequence of solutions (u )* 

which is for m-1,2, . . . , bounded in C (I) and hence also 

equicontinuous in Cl(I) by the equation. By the Arzela-Ascoli 

Theorem and the integrated forms of the equations (6.6m) one 

gets the existence of a converging subsequence whose limit is a 

solution u of problem (6.4) satisfying (6.5).i 
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Theorem 4, Let fmemrdx*2) and R*(Otm), c*(o,b-a], 
re(0,Rc/2] be such that 
(6.10) f(t,-r,0)*0 , f(t,r.O)±o for a.e. t*I 
(6.11) f(t,x,-R)*0 , f(t,x,R)±o for a.e. t*I, each x*[-r,r] 
and 

b 

(6.12) J \f(t,x,(-l)1R)\dt < R/2 for x*[-r,r],i*{-l,l}. 

Then problem (6.1) has at least one Car-solution u such 
that 
(6.13) BuH-sr , flu' IJSR . 

Proof. According to (6.12) we can find such a small 

positive number c that 

b 

(6.14) X \f(t,x,(-l)1R)\dt+cc <R/2 for ic{-l,l}, 
b-e 

Let us put 

g(t,x,y) * 

f(t,x,R) • ^ f j co for y>R 

f(t.x,y) -for -Rsy<R 

* • ' - * * . - * > + TÍílrřTco f o r y<~R 

and consider the auxiliary problem 

(6.15) u' ' =g(t,u,u' ) , u(a)**u(b)=0. 
We shall show that g satisfies the conditions of Lemma 6. Since 
feCarflxiR2), there exists heL^I) such that I f(t,x,y) I *h(t) for 

a.e. tel and for each xe[-r,r], ye[-R,R]. Therefore 
b b 

$\g(t,x,y)dts$h(t)dt+cQ(b-a)**K, for each x*[-r,r]f yelR. 
a a 

Further g( t, -r, 0 )=f(t, -r, 0-SO and g( t, r, 0)=f (t, r, 0)£0 for a.e. 
tcl. Hence, by Lemma 6, problem (6.15) has at least one 

Car-solution u satisfying (6.5). 

Now, we shall prove that 

(6.16) iu'iJ-sR. 

Let us suppose on the contrary that 

max{u'(t);t€i}-ni'Cto)>R. 

a) Let t e[a,b).Then there exist 6>0 and ls-[t ,t+5]c[a,b) o c o o 
such that u'(t)>R for each t€ifi and u' (tQ+S)*u' (tQ). 

Then for a.e. tel- we have u'' (t )*=g( t,u,u' )ssf(t,u,R)+u,~*l^-c >0. 
o U —R+l o 

Thus 0<u' (tQ+6)-u' (to)*0, a contrad ic t ion . 
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b) Let t =b . Then W (b)>R and by (6 .14) we get for any 
o 

te[b-c,b) 
b b b 

u' (b)-u' (t)~ $u''(s)ds* S\W'(t)\dt* S\f(t,u,R)\dt+ccQ<R/2 
t b-C b-C 

which implies u'( t)>R /2 on [b-c,b]. 
b 

Hence r^Rc/2< I W (t)dt=u(b)-u(b-c)=-u(b-c), which contradicts 
b~C 

( 6 . 5 ) . 

Supposing min{u'(t):teI}<-R, we get a contradiction in 

a similar way. Therefore u fulfils (6.16).This implies that u is 

also a solution of (6.1). Theorem is proved. • 

7. MIXED PROBLEM 

Now we consider the case 1=1, 3=2, i.e. the mixed problem 

(7.1) W ' =f(t,u,W ) , u(a)=0 , W (b)=0. 

Lemma 7. Let geCar(Jx(R2) and re(0,co) be such that (6.3) is 

fulfilled. 

Then the problem 

(7.2) W ' =g(t,u,W ), u(a)=0, W (b)=0 

has at least one Car-solution u satisfying (6.5). 

Proof. For /neiN define the function g in the same way as in 
n 

the proof of Lemma 6 and consider the problem 

(7.3m) W ' =g (t,u,W ), u(a)=0 , W (b)=0 

and the parameter-set of problems 

(7.4X) W ' ~\g*(t,u,W ,\), u(a)=C, W (b)=0, 

* m 

where g and \ are also the same as in the proof of Lemma 6. 

Let us suppose that u is a Car-solution to (7.4A) for some 

A€(o,l) and let us show that u fulfils (6.8). 

Put v(t)=-r-l/m-u(t).Then v(a)<0, v' (b)=-W (b)=0 and v' (t)^-u' (t) 

on J. Suppose that there exists t <z(a,b] such that v(t )>0. Then 

there exists te(a,b] such that 0<r(t")=max{r(t): t€j} and v' (t)-=0. 

Therefore we can find 6>0 and the interval J =ft-S, t ]c(a,b] such 

that v'(t-6)2:0 and \v' (t)\ = \W (t) \<R, v(t)*0 for each t€jg. From 

this it follows v''(t)=-W '(t)=-\g (t,u,W )-(l-\)u=-\g(t,-r.0)-
(l-\)u>0 for a.e. t€j Integrating the last inequality from t-S 

o 
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to t, we get O^v' CE)-v' CE-6)^ I v' ' (t)dt>0, a contradict xon. 
zs 

Therefore FTt)^0 on I, i . e . u(t)^-r-l/m on I, Similarly (see 

proof of Lemma 6) we can prove u( t)^r+l/m on I . Hence u 

satisfies (6.8). 

Further we can follow the proof of Lemma 6, where a =b. 

Theorem 5. Let feCar(I*R2) and r*(0, oo) be such that (6.10) 

and (6.11) are fulfilled. 

Then problem (7.1) has at least one Car-solution u with the 

property (6.13). 

Proof. Theorem 5 can be proved in the same way as Theorem 4, 

only instead of Lemma 6 we use Lemma 7. • 

8. FOUR-POINT PROBLEM 

Finally, we shall study the case i=j=3, i.e. the four-point 

problem 

(8.1) u''=f(t,u,u'), u(c)=u(a), u(b)=u(d). 

Lemma 8. Let geCar(lxR2) and r,Ke(o,co) be such that (6.2) 

and (6.3) are satisfied. 

Then the problem 

(8.2) u''=g(t,u,u'), u(a)=u(c), u(b)=u(d) 

has at least one Car-solution u satisfying (6.5). 

Proof. For mew define the function g in the same way as in 
m 

the proof of Lemma 6 and consider the problem 
(8.3m) u''=g (t,u,u'), u(a)=u(c), u(b)=u(d). 

For a fixed m we shall use Theorem 3 to prove the existence of a 

solution to (8.3m). Therefore we need the parameter-set of 

problems 

(8.4A) u''=\g*(t,u,u' ,k), u(a)=u(c), u(b)=u(d)f 

where g*(t,x,y,\)*=\g (t,xty)+(l-X)(x-r/2), Xe[o, 1] . 
» • 

(a) If we define a set Q in the same way as in the proof of 

Lemma 6 with K **K+2(b-a)(r+l), we can get by the same arguments 

like there that for any Xe(o,l) every Car-solution u of (8.4A) 

does not belong to an. 
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(b) g33f*;=i [ E=i * J g*(t.x,o.oMtds -
1 0 L da 

1 C * # 1 
— $ $ g (t,x,o,o)dtds c-a *m 

a a "* 

=4 F R V J Kx-r/2)dtds—i- I J(x-r/2)dtd.s]=x-r/2. 
c l.D-a c-a j 
0 u d a a a 

So the equation g (x)=0 has just one root x =r/2 and the 

constant function u (t)=r/2 on I belongs to fi. Thus u eaQ. 
o o 

(c) Finally A=(r-2/m, r+2/m) and d[g3 , A, 0]*0. 

We have shown that all conditions of Theorem 3 are 

fulfilled which implies that problem (8.3m) has at least one 
solution u eft. Further we can follow the proof of Lemma 6.B m 

Theorem 6. Let all conditions of Theorem 4 are satisfied. 

Then problem (8.1) has at least one Car-solution u with the 

property (6.13). 

Proof. Theorem 6 can be proved in the same way as Theorem 4, 

only instead of Lemma 6 we use Lemma 8.i 

9. EXAMPLES 

Example 1. Let us consider three equations 

(9. 1) u"=eUU' (uS+(u' )3+3t2-l), 

(9.2) u' '=eUU'(u7+(u' )5+3t2+5), 

and 

(9.3) u"=eU(uS+(u' )3+3t2-l). 

Further let us put I=[0,1], c=10~4, l=[0,c], I=[c,l-c], 

J=[l-c,l]. We want to prove the existence of a function 

u^AC (I) which satisfies equation (9.1) on the initial part of J 

(i.e. for a.e. t€j ), equation (9.2) on the middle part of J 

tej^) and equation (9.3) on the end part of I 

Moreover u has to satisfy on I the 

u(0)=u(c) 

(9.5) ua-c)=ufl). 
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(9.4) 

and on I 
3 

the condition 



We shall use Theorem 6. Let us put 

e*y(x5+y3+3t2-l) for a.e. tei^ 

f(t,x,y)=\ exy(x7 +y5+3t2+5) for a.e. tel^ 

{ eX(x5+y3+3t2~l) for a.e. tei^ 

where x,ye|R. Then f€Car(lxiR2) and for r=2, R=20 f satisfies 

conditions (6.10), (6.11) and (6.12) which implies the existence 

of a solution u of our problem (9.1)-(9.5). 

In the same way we could prove the existence of a solution 

u of equations (9.1)-(9.3) satisfying 

(9.6) u(0)=u(l)=0 

or 

(9.7) u(0)=u'(l)=0. 

Example 2. Let us consider the equations (9.1) and (9.2) 

and let us put I=[0,1], e=10~\ l=[0,e], I =[e, 1-c ], I =[ 1-c, 1 ]. 

We want to prove the existence of a function ue_4C (I) which 

satisfies equation (9.1) on I and I and equation (9.2) on I 

and moreover it fulfils the condition (9.7). We can put 

( exy(x5+y3+3t2-l) for a.e. tel u I 
f(t,xty)=\ * 3 

^ exy(x7+ys+3t2+5) for a.e. tel 

Then similarly as in Example 1 we can show that for r=2, R=20, 

feCardxB2) fulfils (6.10) and (6.11). So the existence of a 

solution to the transmission problem (9.1),(9.2),(9.8) follows 

from Theorem 5. 

Notice that in this case f does not fulfil (6.12) and so we 

can not get the existence of solutions of problem (9.1),(9.2), 

(9.6) or problem (9.1),(9.2),(9.4),(9.5). 

Example 3. Let I=[0,10], c=10"2. Let us consider two 

equations 

(9.8) u"=hi(t)(u
2k*1 + (u' f^+ln) 

(9.9) u''=ri2(tXu
2k+1+ru' )2n+l) 

where k,neti, k<n and h ,h el (I) are positive with 
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I h (t)át<- J 

Let us put 

f(t,xty)= 

io~є
 2
 4-10

2
* 

, hi(t)(x2k*l+y**1+2n) for a.e. te[o,l-c) 

Ь
2
(t)(x

2k+
Vy

2n+
 for a.e. t€[l-є,l] 

and for each x,ye\R. Then feCar(I*&2) satisfies for r-=R=10 the 

condition (6.10)-(6.12). Therefore there exists a function 

ueACl(I) which fulfils (9.8) on [0,10-e] and (9.7) on [10-c,10] 

and moreover it satisfies (9.4),(9.5) (or (9.6) or (9.7)). 
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