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Abstract 

Phase functions and phases of ordered pairs of independent so
lutions of second-order linear differential equations y" = q(t)y have 
fundamental importance in the theory of second-order linear diffe
rencial transformations [1], [2] and in two-dimensional spaces of con
tinuous functions [5], [6]. 

In this paper we shall study the phase function a with the final 
oscillation [4] and respective fundamental central dispersion ip. We 
shall deal with the relation between them which is expressed by the 
Abel functional equation [3]. 
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In this paper we denote N the set of all natural numbers, Z the set of all 
integers, E the set of all real numbers, j = (a, b) an open interval, Co(j) the set 
of all continuous functions defined in the interval j . We suppose that the interval 
j -= (—oo, oo) that is a = —oo, b = oo throughout the paper. 

1 Phase functions 

Now we give the definition of phase function from [1] and its fundamental cha
racteristics. 
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Definition 1.1 The phase function in the interval j is a real function a = a(t) 
with the following properties: 
V *eCo(j), 
2. a(t) is increasing or decreasing in the interval j . 

We denote by Mi(M2) the set of all increasing (decreasing) phase functions 
and by M the set of all phase functions. Thus M = M\ U M2. 

Let a £ M. The continuity of the phase function a yields an existence of 
proper or improper limits 

c = l ima(/) for t —> — 00, 

d = \ima(t) for i —> 00. 

Definition 1.2 The proper or improper limit c (d) is called the left (right) 
boundary value of the phase function a. 

To denote that c (d) is the left (right) boundary value of phase function a 
we write also ca (da). 

If the phase function a increases (decreases) in the interval j we have 

Ca <C Cta \Ca J> (*a)' 

Let J denotes the set of all functional values of the phase function a. It is clear 
that J is an open interval with boundary values cai da. When the phase function 
a increases (decreases), it holds J = (caida) (J = (day ca)). 

Definition 1.3 The number \c — d|, where c (d) is the left (right) boundary 
value of the phase function a, we call the oscillation of the phase function a in 
the interval j and denote by 0(a/j) or briefly 0(a). Thus 0(a) = \c — d\. 

2 Conjugate numbres according to the phase 
function 

Definition 2.1 Let a £ M. Let t £ j be any number. The number a? £ j we 
call conjugate with the number t according to the phase function a, if 

a(x) — a(t) = /i?r, (2.1) 

where /i £ Z. 

The definition follows that every number is self-conjugate. This trivial case 
is excluded from other considerations. 

Definition 2.2 Let (2A) holds and n = |/i|, \i ^ 0. For fi > 0 (/i < 0) the 
number x we call n-th right (left) conjugate number with the number t. 
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T h e definition yields t h a t for 0(a) < n there are no conjugate numbers 
according to the phase function a. For 0(a) > 7r there are different conjugate 
numbers according to the phase function a. We also say tha t the phase function 
a induces conjugate numbers in the interval j . 

Our further considerations are devoted to phase functions with a final os
cillation. It means a case of the phase functions a £ M such t h a t O(cv) £ R. T h e 
definition of the oscillation follows tha t this case sets in if and only if the left 
and right bounda ry values of the phase function a are proper numbers . T h u s 
ca, da £ M. 

3 Fundamental numbers and fundamental 
sequences 

T h e o r e m 3.1 Let a £ M and m £ N, m > 2. Let (m - 1)TT < 0(a/j) < mw. 

Let ca(da) be left (right) boundary value of the phase function a. Then there 

are numbers aM, b-^, fi == 1, 2, . . . , m — 1, in the interval j such that 

a(a/i) = ca+€afi7r} (3.1) 

a ( 6 _ ^ ) = Ja-^a/i7T, (3.2) 

where ea — 1 for a increasing and ea = — 1 for cv decreasing in the interval j . 

The numbers a ; i , 6 -^ , /i = 1, 2 , . . ., m— 1 are just the numbers from the interval 

j such that a(aA , ) , a ( 6 _ / i ) E J, fi £ Z. 

P r o o f T h e assumpt ion 

0(a/j) £ ((m — l)7r, m7r) 

yields t h a t the boundary points c a , da of the open interval J, which means the 
set of all values of the phase function a , hold the following relations 

ca + (rn — 1)TT < da < ca + rrnr, if a increases in j , 

ca — TTITT < da < ca — (m — l)7r, if a decreases in j . 

So the interval J possesses exactly (rn— 1) points a^ and exactly (rn— 1) points 
b_^ holding the formulae (3.1) and (3.2). 

D e f i n i t i o n 3 .1 T h e final sequence of points 

we call the left fundamental sequence of points induced in the interval j by the 
phase function a. 
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The final sequence of points 

{*-,};=:/ 
we call the right fundamental sequence of points induced in the interval j by 
the phase function a. 

It is obvious that: 

1. The points of left (right) fundamental sequence are conjugate numbers 
according to the phase function a. 

2. For fundamental sequences of points in j induced by the phase function a 
there hold the relations 

a{ < a2 < . .. < a m _ i , (3.3) 

6_! > 6 _ 2 > . . . > 6 _ ( m _ 1 ) . (3.4) 

3. If we set a0 — a, 6o = 6 then 

a0 < 6_(m_x) < ai < 6_(m„2) < < 6_i < a m _i < 60. (3.5) 

If 0(a) £ ((m — l)7r, m7r) then in (3.5) signs of inequality are valid there. 

If 0(a) = m7r then in (3.5) signs of equality are valid there and thus the 
left and right fundamental sequences coinside. 

4. Let O(a) £ ((m — l)7r,m7r). Then we have 

0 < |a(6_ ( m_ / i )) - a(a^)\ < IT. 

Let 0(a) = mir. Then we have 

| a ( 6 _ ( m _ / i ) ) - a ( a / i ) | = 0. 

Definition 3.2 Let m £ M, m > 2. Let O(a) £ ((m - 1)TT, m?r), a £ M. The 
phase function a we call of finite type (m) general. 

Let m £ M, m > 2. Let 0 ( a ) = m?r, a £ M. The phase function a we call 
of finite type (m) special. 

We notice now some properties of fundamental sequences of points in the 
interval j . 

In the case that 0(a) £ ((m — l)7r,m7r) points of fundamental sequences 

{an} _i » {̂ ~/~} - i divide the interval j into intervals j^,iu where 

j'/i = ( a ^ . ^ ! . . ^ ) . /i -- 0 , l , 2 , . . . , m - 1, (3.6) 

iu = (6_(m_ |y), a,,), i/ = 1,2, . . . , m - 1. (3.7) 

In the case that 0(a) = m7r the intervals i^, v = 1, 2,. . . , m — 1, are empty sets 
and 

Jn = ( < W K ) » M = 0 , l , . . . , m - 1. (3.8) 
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Definition 3.3 The number a i (*- i ) defined by (3.1) ((3.2)) we call left (right) 
fundamental number in the interval j and denote by r (s). Thus 

r = au s = b_i. 

In the case that the phase function a is of finite type (m) general the numbers 
r, s are not conjugate. In the case that the phase function a is of finite type (m) 
special the numbers r, s are conjugate. 

Let 0(a) G ((m — 1)TT, mir). Let t0 G j ^ for one of the numbers 
/i — 0, 1,. . . , m — 1. Then in any interval j ^ for the other /i there is exactly one 
conjugate number with the number to. We have m conjugate numbers here. 

Let to G iiv for one of the numbers v — 1, 2 , . . ., ra — 1. Then in any interval 
iu for the other v there is exactly one conjugate number with the number to. 
We have m — 1 conjugate numbers here. 

Let 0(a) — mir. Let tQ G j/i for one of the numbers î = 0 , 1 , . . . , m — 1. 
Then in any interval jf̂  for the other /i there is exactly one conjugate number 
with the number to. We have m conjugate numbers in this case. 

We note that left and right fundamental sequence of points of the phase 
function a, 0(a) G ((m — 1)7r,m7r) possesses always m — 1 conjugate numbers 
so even in a case that both fundamental sequences of points coinside. 

4 Equivalent phase functions 

In the set M of all phase functions we define an equivalence relation which we 
denote by ~ . 

Definition 4.1 We say that phase functions a, /3 G M are equivalent in M and 
write a ~ ft if in the interval j with the exception of singularities of functions 
tga, tg/J there holds the relation 

^ w aaitgaOO + a22
 v } 

where 
ana 2 2 ~ ai 2a 2 i ^ 0> t G (-00,00). 

It is evident that 
1. The equivalence relation ~ in M is reflexive, symmetric and transitive. 
2. Let aik G M, i, k = 1, 2. Let ana22 — ^12^21 7̂  0. 

Let 6 = sgn(ana22 — ai2a2i). The linear rational function 

aii^ + a i 2 

^21^ 4- 022 

increases (decreases) by parts in j if and only if 6=1 (S = —1). 
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Theorem 4.1 Let a,/3 E M. Let /3 ~ a. Then fundamental sequences of points 
of function a are fundamental sequences of points of the phase function (3. 

Proof Let 0(a) £ ((m — l)7r,m7r), m > 2. Let us consider left and right 
fundamental sequence of conjugate points according to the phase function a, 
that means points 0^ ,6 .^ defined by (3.1) and (3.2). Then (4.1) yields 

t a/ \ _ antg<*(ci/i) -f a i 2 _ antgca + a12 

a21tga(afjL) + a22 a21tgca + a22 

for fi = 1 , . . . , m — 1. 
From here we have 

/5(aM) = cp + 6ea[nr, /i = 1 , . . . , m - 1, (4.2) 

since from (4.1) for t —• — oo we get 

a n t g c a + a i 2 tgC/J = . 

a21tgca + a22 

Further from (4A) we have 
aiitga(6_ / i)-f-ai2 _ a n t g d a + a i 2 

t«9(6. | i ) = 

for \x = 1 , . . . , m — 1. 
From here we have 

a2 i tga(6_ / i) + a22 a21tgda + a22 

/?(6-ji) = dp - 6ea\i7<, /i = 1 , . . . ,rn~ 1, (4.3) 

since from (4A) for t —• oo we get 

an tgdc -f ai2 

fl2itgaa + a22 

The formulas (4.2) and (4.3) certify the validity of the theorem. 

Corollary 4.1 Let 0(a) 6 ((m - l)7r, m7r). Let (3 ~ a. Then 

0 < | /5(6_ ( m_M ))- /?(aM) |<7r . 

Proof The assertion follows from the above theorem and the assertion 4. of 
paragraph 3. 

Theorem 4.2 Let a, (3 £ M. Let (3 ~ a. Let 0(a) G ((m - l)7r,m7r). Then 
also 

0(f3) e((m- l)7r,m7r). 
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Proof From (4.2) and (4.3) we get 

/?(fl/i) = cp+6eafi-, (4.4) 

/ ? ( 6 - ( m - A 1 ) ) = d/J - OE a (m. - /i)7T. 

From here 
^ ( ^ ) - /?(t_(m-M)) = cp - d^ + 6£amir. 

As a consequence of (4.1) and (3.5) it holds 

- ^ r < / ? ( 6 - ( m - / i ) ) - ^ ( a M ) < 0 , if 6£<* = 1, 

0 < /? (b_ ( m _ / i ) ) - /5 (a^ ) < 7T, if 6ea = - 1 , 

or 

0 < / % , ) - / ? ( & _ ( m _ A i ) ) < 7 r 5 if fea = l, (4.5) 

- 7 r < / ? ( a M ) - / ? ( 6 _ ( m _ / i ) ) < 0 , if fea = - l . (4.6) 

From (4.4) and (4.5) we get 

0 < cp - dp + m~ = ^(a^) - /3(b_(m_ / i )) < TT, if 6ea = 1 

and then the phase function /? increases so 

—m7T < cp ~ dp < — (m — l)7r 

or 
(m - 1)TT < dp - cp = 0(/?) < m7r. 

If <5t~a = — Ithen the phase function /J decreases and (4.4) and (4.6) follows that 

-TT < cp ~ dp- mw = /?(a^) - /3(6_(m_/i)) < 0 

or 
(m - l)7r < cp ~ dp = 0(/3) < rrnr. 

Thus in both cases we have 

0(6) G ( ( m - l)7r,m7r). 

Theorem 4.3 Lel a,/? € M. Lei (3 ~ a. Lei 0(a) = m7r. Then 

0(/3) = mTT. 
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Proo f In this case both fundamental sequences of points coinside and we have 

6-(m~/i) = <V 

Thus 

(3(afl) = cp +6eam7rJ 

P(ay) = /3(6_(m_ / i)) = dfj - 6ea(rn- fi)ir. 

After subtracting 
cp — dp — 6samw 

and then 
0(0) = \cp - dp\ = m7r. 

5 Fundamental central dispersions 

Let a e M. Let 0(a) G ((m - l)7r, m7r), m G N, m > 2. Let ea = l ( e a = - 1 ) , 
when a increases (decreases) in the interval j . 

The fundamental points 

a^.b^^n = 1,. . . , m - 1 

defined by (3.1) and (3.2) and the intervals j , z , i„ defined by (3.6) and (3.7): 

i/i = (aM )6_(m-i_^)), li = 0 , 1 , . . . , m - 1, 

i„ = (6_ ( m_ l /) ,a I /) , i/ = 1,2, . . . , m - 1, 

form a partition of the interval j . 
Let r = oi, s = 6_i. The fundamental points will be completed by points 

CLQ = a = — oo, 60 = 6 = oo. 
Now we define a function <p = <p(t), t G j , which maps each point t G j on 

a point y?(£) G j , where </?(£) is the first rigth conjugate point with the point 
t according to the phase function a. If the point t does not possess any right 
conjugate point then <p maps the point t on the smallest conjugate point with t 
in the interval j according to the phase function a. That means: The function 
(p maps points 

a0 on ai , ai on a 2 , . . . , a m -2 o n am-\ > a>m-\ ° r i ao5 e t c , 

6 0 on6_( m _ i ) , 6_(m_t) on 6_(m-2),-• ,6_2 on 6_i, 6_! on 60, e t c , 

and intervals 

k on ji, j ! on j 2 , . . •, j m _ i on j 0 , etc., 

2*1 On 2*2, -2 On 2*3, . . • , Vn-l Oil lj , e tc 
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So we get following relations: 

a[<p(t)] = a(t)+ea7f 

for t E jo U 6_ ( m_i) U ii U ai U j i U . . . U 6_2 U i m _ 2 U a m _ 2 U j m _ 2 , 

a[p(t)] = a(t) - ea(m - 2)TC f o r * E i m - i , 

a[<p(t)] = a(t) -ea(m - 1)TT for t E j m - i , 

where 

^(;s-) = 60 = 6 r_ oo, </>(*+) = &-(m-i), (5.1) 

and the symbol y?(5~) resp. <p(s+) means the limit of the function <p(t) at the 
point s on the left resp. on the right 

<p(am-i-) = ai = r, <p(am-1+) = a0 = a = - c o , (5.2) 

where the symbol <p(am-i-) resp. <^(a m _ 1 +) has the above given meaning, 

<p(a0) = ai =r r , y?(60) = 6_ ( m _i } (5.3) 

and the symbol <p(a0) resp. ^>(60) means the limit <p(t) for 2 —> — oo resp. for 
t —> oo. 

Definition 5.1 Let a E M, O(a) E ((m - l)7r,m7r), m G N, m > 2. Let a - 1 

denotes the inverse function of the phase function a. We define the function <p 
in the interval j as follows 

Қt) 

f a~x(a(t) + eaw) for t E (-oo,B), 

a~l(a(t) - £ a(m - 2)w) for * E i m - i = (6_ i , a m _ i ) , 6_i = s, 

fc a ~ 1 ( a ( 0 - e a ( m - 1 ) T T ) for I E j m - i = ( a m _ i , 60), 
(5.4) 

and in the points of discontinuity s = 6_i, am_i and in the points a0, 60 there 
are the limits of the function <p given by (5.1), (5.2) and (5.3). 

We call the function <p the fundamental central dispersion of the phase fun
ction a. 

This function <p is continuous in the interval j with the exception of points 
s, a m _ i . 

So the fundamental properties of the function <p are: 

1. <p is defined and continuous in the interval j with the exeption of the points 
s , a m _ i . 

2. Hrn <p(t) = oo, Hm <p(t) = 6_ ( m_i), 

3. lim <p(t) = r, lim <£>(*) = - o o , 
* — > a m _ i - <—>arm_i-,-
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4. lim <p(t) = r, lim <p(t) = &_(m_i) (< r), 
£_+—. OO f—• + 0 O 

5. <p increases by parts in the interval j , namely 
from r to oo in the interval (—00, B), 
from 6_(m_i) to r in the interval (B ,am_i) , 
from —oo to 6_(m_i) in the interval (a m _i ,oo) . 

6.<p(t)>t for t e (~oo, s), <p(t) < t for t e (s,am.-.i)> <€ (a m _i ,oo) . 
Indeed, in the interval (—oo,s) we have 

cp(t) = a~l(a(t) + eair) > a~\a(t)) = *. 

since for ea = 1 the function a - 1 increases and for £a = ~J it decreases. 
Similarly we show that in the interval (,s,am_i) = im-i we have 
for m G N, m > 2 

<p(t) = a " J ( a ( 0 - ea(m - 2)TT) < a T l ( a ( 0 ) = *; 

if m = 2 then 

p(0 = < 

and in the interval ( a m _ i , 00) = j m _ i we have for ^ G N, m > 2 

<p(t) - a~l(a(t) - £ a(m - 1)TT) < a"l(a(t)) = *• 

7. For £ G (—00, s) it holds a ( ^ ( 0 ) = a(t) + eair, 
for t e ( s , a m _ i ) it holds a(<p(t)) = a(l) — £ a(m — 2)7T, 
for t e (a m _i ,oo) it holds a(<p(t)) = a ( 0 - ea(m — 1)TT. 

Definition 5.2 Let a G M, 0 ( a ) = m7r, m G N, m > 2. Let a " 1 denotes the 
inverse of the function a. We define the function <p by the following relation 

( a-l(a(t) + ea7r) for * G (-00, B), s = 6-i , 

(5.5) 
a L (a (0 — ^a("^ — 1)TT) f o r t G ( s , o o ) , 

and we call it the fundamental central dispersion of the phase function a(t), 
tej. 

The following relations hold 

<p(s-) = oo, <p(s+) = - o o , <p(a0) = r, <p(b0) = r. 

The function <p is not continuous in the point s. 

Thus we can summarize properties of the function <p: 

l. <p is defined and continuous in j with the exception of the point s. 
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2. lim <p(t) = oo, lim <p(t) = — oo, 
t—+5— t-+S + 

3. lim <p(t) = r, lim y?(/) ~ r> 
t__>._oo t—++00 

4. ty? increases by parts in the interval j , namely 
from r to oo in the interval (—oo, s) and 
from —oo to r in the interval (s,co). 

5. <p(t) > t for t G (—00,5), <£>(r) < 2 for l G (B, oo) 

6. ot(<p(t)) = a(2) -f cSa7r for t G ( -co , s) 

a(<p(t)) = cv(tf) — £ a(m — l)7r for t G (s, oo). 
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