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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURЛLШM 

1993 Mathematica XXXII Vol. 110 

LINEAR FORMS O N F R E E M O D U L E S 
OVER C E R T A I N LOCAL R I N G 

MAREK JUKL 

(Received December 12, 1992) 

A b s t r a c t 

A real linear algebra A having a E-basis < 1, r/,.. ., r/m~] > with 
r/m = 0 will be called the plural algebra. The linear forms on a 
free finite-dimensional module M — especially their kernel — are 
investigated. 

K e y words : Linear algebra, free module, linear form. 

MS Classification: 13C99 

The problem solved in the article may be formulated as follows: It is known 
that the kernel of linear form on a vector space is a n - 1-dimensional subspace. 
Can this be suitably generalizated in the case the real vector space be replaced 
by a free finite-dimensional module over a certain local ring? 

In the article, it will be shown that an analogic relation between linear forms 
on this module and its (certain) hyperplanes can be found. 

1 Real plural algebra of finite order. 

Definition 1.1 Real plural algebra of order m is every linear algebra A o n 1 
having as a vector space over 31 a basis {1, r/, r/2,..., r/ m _ 1 } , where r/m = 0. 

Definition 1.2 By a system of projections A—>E it is meant a system of map
pings pk : A onto E, defined for k = 0, . . . , m — 1, as follows: 

m— 1 

V/?€A, /?= £ 6 , V ; pfc(/i)dJ:V 
£=0 



Proposit ion 1.3 An element e ~A is a unit if and only if p0(e) ^ 0. 

Proof 
1) Let e EA be a unit and let p0(e) = 0, 

p0(e) = 0 => 3/i G A; e = 77/1. Then 1 = ee~l = (rjp)s~l = rj(jie~l). Multi
plying the equality rj(jie~l) = 1 by rjm~l we get 0 = rjm~l, which contradicts 
D. l . l . 

2) Let p0(e) 7̂  0. 

Let £ = ]T)i=o Cj/]1. Then e~l = _^™0 / - ^ e x i s ^ s if an (* o n ty if ^n e following 
system of equations (expressing just the fact _^i_o eirf ' __^=o /*r7* = 1) is 
solvable. 

(*) eQfk + eiffc.i + ... + ekf0 = 60k, 0 < k < m - 1. 

It is solvable if and only if e0 = p0(e) ^ 0. 

Proposit ion 1.4 Let a unit a ~ A be given. Then there exists a f3 G A wtM 
/?2 = a if and only if p0(a) > 0. 

Proof Let a = YlT^ ^rjk. Let us take /?,/? = X^™"1 6,V. Then 

m— 1 

/?2= £ W+f 
*+i=o 

Thus 

m—1 m—1 

a = /?2 <* a = £ a*-,* = £ W+'', 
fc-O i + J = 0 

which is equivalent to the system of equations: 
(0) a0 = b2

0 

(1) a, = 2606i 

(2) a2 = 26062 + b\ 

(m - 1) am_i = 2606m_i + 6x6m_2 + . . . + 6m_26i 

With respect to the condition p0((3) = 60 7- 0 (P.L3) it is solvable if and only 
if a0 = p0(a) > 0. 

Proposit ion 1.5 A is a local ring with the maximal ideal rjA. The ideals if A, 
1 < j < rri, are the all ideals in A. 

5:0 



Proof 
1) 77A is the only maximal ideal in A 

77A is evidently an ideal. According to P. 1.3 A\r)A consists just of units of A. 
From this follows (see the consequence 1.6.(1) of theorem 1.3. in [1]) that A is 
a local ring and 77A the maximal ideal of one. 

2) rf'A, 1 < j < m are the only ideals in A 
Let J, J / A, is an ideal in A and let us suppose that 

Vj, l < j < r a ; J^rfA. 

For such ideal certainly 3k, 1 < k < m; J C r)k A A J <JL r]k + 1 A. 
Let a £ J, 

rn-1 

ex g rjk+lA => ex = V^ ajrf , a0 = ' . . . = a^ — ] = 0 , a^ / 0. 
i=o 

Thus e = ^TL"*.1 cijrf~k is a unit, a = r)ke. If £ E 7?fc A then: 

3 /?GA; e = ^ / ^ = ( ^ _ 1 ) « - > ^ J ^ J = 77*A 

which is a contradiction. 

Proposit ion 1.6 The ring A is isomorphic to the factor ring of polynoms 
R[x]/(xm). 

P r o o f Let us consider the mapping 
/ : R[x] -> A, f(h(x)) = /I(T/), V/I(X) E R[x]. 

Then / is clearly an epimorphismus with the kernel (x**1). Therefore following 
diagram commutes: 

j [x ] / ( í f f l ) 

and the mapping F is an isomorphism. 

Proposit ion 1.7 The ring A is isomorphic to the linear algebra of matrix 
3Vtmm(IR) of the form: 

bo bi . . . bm_i \ 
0 b0 . . . 6m_2 

0 0 60 / 
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P r o o f Let us define g : A —> M m m ( E ) in the following way: 

m— 1 

a = \Y1 ajrf => g(a) = (a,-,-) <£> [(j < i => at;- = 0) A (; > t => atJ- = cy _,-)]. 
i=o 

Considered mapping is evidently the founded isomorphism A—KM. 

2 Free finite-dimensional modules over 
the algebra A 

A g r e e m e n t 2.1 In the following text we denote by A the E-algebra introduced 
in section 1. We will have a deal with the free finite-dimensional modules over 
the algebra A *. The capital M denotes always such module. 

P r o p o s i t i o n 2.2 Let { F i , . . . K n } be some system of generators of a module 
M . If U_\) - - - ylLk are Nearly independent elements from M then: 

(1) k<n 

(2) by a suitable renumbering of elements E±y..., Enr 

{IL\ >•••> iZt > i£fc+i > • • • i En } WM be a set of generators of M . 

P r o o f (by induction) 

(a) k = 1 

(1): evidently fulfiled 
n 

(2): let U_x be linearly independent, U_x = Y^^tiS* (*) 
«=i 

We will show that there exists at least one unit among £ i , . . . £n . In the opposite 
case multiplying (*) by nm~~l we have: r)m~~lU_x = oA/ / m _ 1 / 0 => Hx is linearly 
dependent — contradiction. Let for example £i be a unit. Then from (*) it 
follows: 

J =2 

Consequently \U_l, E^,..., E„\ = M . 

(b) Let P.2.2 be fulfiled for k - 1. 

As A is a local ring, that M is an A-space in the sence of [2]. 
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As U_l}..., f/j. are linearly independent, then U_x,. . . , U_k-\ a r e linearly indepen
dent as well. By the induction supposition we have by a suitable renumbering 
ofE,-: \U1,...,Uk_1,Ek,...,En)=M. Now 

k — 1 n 

Ut € M => ___ = Y_ tiHi + Y. ZiEj (**) 
1 = 1 j=fc 

Let us derive that there exists at least one unit among fo,..., £n • Otherwise 
after multiplying (**) by rjm~l we would obtain: 

(vm-1Zi)Ui + --- + (vm-1tk-i)Uk-1-r,m-1Uk=oAT,m-1?0 

which contradicts to linear independence of Ux,. . . , U_k. 
Let for example £j. be a unit. Then from (**) we have: 

Ek = (-er'eoiZi + • • •+(-^16-1)iz*_1+ 
+^]/z* + (-Vfc+o.a.+i + • • • + (-4"^n)^. 

It follows from this that: [£/-_,. .. ,U_kiMLk+ii • • • ?£n] —M, i.e. (2) is true. 
From the induction supposition we get that k — 1 < n. 
From (**) it follows that k — 1 = n implies the linear dependence of U1, .. ., U_k) 

which is not possible, i.e. (1). 

Consequence 2.3 If the module M has one basis consisting of n elements then 
any its basis consists of the same number n elements. Any linear independent 
system of n elements of M forms a basis of M. The number n is called the 
dimension (more precisely A-dimension) of the M. Moreover it follows from the 
proof of P.2.2 that a linear independence of the system {K1 ; . . . , E_n} implies 
the linear independence of the system {U^ , . . . , £ / * , Kjb+i, • • •, __W } • 

Proposition 2.4 Let M be a free n-d^mens^onal module on A. Then M is an 
mn-dimensional vector-space oi>er IR (m denotes —as usually— the order of A). 

P r o o f Let £ = < E_x,. . ., E_n > be a basis .of A-module M. Let U E M, & G A, 

n m—\ n rn—l 

u-.£&.&, & = Y_*»>v. i < i < « => fl = EE-••;(,r!-s.)-
2 = 1 jzzO izzl jzzO 

I.e. M is evidently a vector-space over E. It remains to prove that the system 
of generators 

'B=<E1,...,E_l,r,E1,...,VEn,...,rim-1E1,...,r)
m-lEn> 
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is (over E) linearly independent. 
Let us suppose that 

n m—1 

3e<;€K; £ £ e ^ ) = o 
i = l j=o 

It follows from this 
n m — 1 m — 1 

_C( _C e^)^i = fi =* _C e*jV = °> 
1=1 j = 0 j = 0 

Vi, 1 < i < n (as _£_,. G £) => Vi, 1 < t < n, Vj, 0 < j < m - 1; e{j = 0. 

Therefore _3 is a basis of M as a vector-space on E, thus card _3= dimM= mn. 
R 

Proposit ion 2.5 Let £ = < Fi, •. •, ___„ > 6e a bas.s of A-module M. Le. ws 
define a system of vector-spaces P o , . . . , P m - i over E ; 

P i = [v ,__i, . . . ,7 , '__.] , 0 < . < m - l , 

Considering M as an M-vector space, then the following statements are valid: 

(i) M = e £ - )
1 P . 

(2) V__GM 3! (__ D , . . . ,__ n _ 1 )GPg l ; __ = __£ _ V _ _ , -

Proof 

1) As £ is a basis of A-module M, then according to the proof of P.2.4 

'B=<E1,...,En,T,E1,...,VEn,...,r,m-1E1,...,T]m-1En> 

is a basis of a vector-space M over M, from which we have (1). 
2) Let X EM. 

n m ~ l 

Then X = _^&J__,-, £ = _T) «oV", *ij 6 l , 1 < i < n, 0 < j < m. 
t = i j=o 

n m—1 

Then X = J2 E ««^--. = E ^ ' E *«--<)• 
1 = 1 j=0 j i 

n m— 1 

Let us put 5^&_E«- = 2C;. Then X = ] T i^Xj i 2Cj £ p o , 0 < j < m. 
t=i i=o 

As _3 is a basis of the vector-space M, we get from this that the system of 
elements Xij E l , 1 < i < n, 0 < j < m, and thus also vectors Kj arc unique 
i.e. (1). 

Notat ion 2.6 The system of vector-spaces P _ , . . . , P m - i is determined by a 
given basis of A-module M. Therefore "unique" in 2.5 (2) means unique up to 
selection of a basis of M. 
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3 Linear forms on modules over the algebra A 

Proposition 3.1 Let <j> be a linear form on M (A.2.1). Then there exists ex
actly one system of linear forms <f>o,. . . , (/>m-i M into E such that: 

m — l 

<t>= 53 trf 
j=0 

Proof 
m— 1 

u e M => <j>(u) = 5 3 M JV =» Pj(HLD) = t/j, 0 < j < m. 
i=o 

Denoting <^ = 0 o pj, 0 < j < m, we cleary obtain a system of mappings 
<̂ o, • • •, 0m-i satisfying the equality <j> = X ^ o ^jV- Exactly one such system 
exists for arbitrary linear form <j>. [if {<f)j}, \ipj} are two such systems then 

m —1 m — l m — l 

j=0 j=0 j=0 

Due to D.L2 it follows that {<j>j} is a system of linear forms M into JR. 

Proposition 3.2 If (fro, • • •, ^m-i are linear forms then the mapping 
m~ 1 

</>= $3 trf 
3=0 

is a linear form M into A if and only if VX E M ; 

MvK) = o, ) 
1 < k < m- 1 > (*) 

MiX) = 4>k-i(20 J 
Proof 

1) Let <f> = J2T=0 't'irf ^ e a ' i n e a r f ° r m As <̂> is a linear form M into A, 
then VX € M; <j>(r)X) = rf<j>(X). Thus 

m - 1 m - 2 m—l 

E MvKW = _P MK)rik+1 = E ^-iQO^. 
j = 0 Jfc=0 j = l 

we get from this 

!>;(20 G i ] : 0o(i?2O = o. 0i(»»2Q = ^ - i (2D, ] < i < ™ - i. 

i.e. (*). 

2) Let (*) be true 
(a) as <j)j are linear forms, evidently VU, V G M; <j)(U_ + V) = <£(£/) + <£(V) 
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(b) we prove: VK € M; <j>(tjX) = r\4(X)\ 

m— 1 

*fo.2Q = £ *ifa2Q^ [(*)] = 
i=o 

m - 1 m - 2 m - 1 

= E ^-iQO^ = •?(£ <M*K) = ? ( £ W W ) = ^(20 
i = l i=0 j=0 

(c) we prove: VX G M, Vo G A, a = ^ J L " 1 a j V ! <Ha20 = ar.^QQ: 

m—1 m—1 

*(*20 = *(E(*JV)20 t(a)] = E ^KV*) = 
i=o i=o 

m—lm—1 m—1 m—1 

= £ £ M'rfxtf = £ « ; £ f̂c(̂ 2C)r?* = 
j fc=0i=0 i = 0 fc=0 

m —1 m—1 

= £ a^rf )0[(b)] = ("T a,V)«K2D = M(2Q 
i=o i=o 

It follows that ^ is a linear form. 

P r o p o s i t i o n 3.3 Lel <j>o,... ><t>m-\ : M ™> E 6e a system of linear forms such 
that 

m—1 

i=o 

25 the linear form M into A. Then 

m - 1 fc 

VXGM, 2£=£»r\£j.2£..GPo; ^-(20 = £^*-i(2Ci). 0 < j < m - l . 
; = 0 j = 0 

Proof Let X = Y^=o Tf2Ly Then 

**(20 = M2La + f)X1+-+ r)kxk + ••• + rr-'iLsn-x) = 

= <J>k(Xjo + v2Ll + r)k2Lk + ••• + 

+nk(ri(2Lk+i + ••• + nm-k-2xm-i))) [P-3.2] = 

= MX0) + ^-i(2Ci) + • • • + Mxk) + 

+4>o(ri(Xk+l + --- + r,m-k-22Lm-i)) = 

= Mx0) + *k-i(Xi) + ••• + Mxk) + o, 0 < k < m - 1. 
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Proposition 3.4 If (j) : M —> A is a linear form then there exists exactly one 
system of linear forms / 0 , . . . , fm_x : P 0 -> E such that 

m-\ 

VK€M, X=^2^Xji XJGPQ 

; = 0 

the following relation is valid: 

k 

M £ ) = £ /* - i (2g) , 0 < * < m - l . (*) 
i=o 

where 
m - l 

] T <j>jrf = (j) 
i=o 

Proof Putting fj = <£j/Po, 0 < jf < m - 1, we get (due to P.3.3) the system 
of linear forms Po —• 3R fulfiling (*), i.e. 

M*) = £/*-;(2Q), o<*<m-i . 
i=o 

We prove the unicity of this system: {//}, {#j} being two systems fulfiling (*) 
and determining systems of linear forms M into A {<!>]}, {ipj} consecutively. 
From the equality <j> = J ^ 1 far? = EJL"^ ^ V it follows (due to P.3.1): 
<j>j = i/jj, 0 < j < m — 1. From this we arrive in equalities 3.4 (*) in the form 
as follows yX_, X_ = Y2T=o rf 2L.: 

(0) * = 0 : (7o(X0) = V>o(20 = M20 = /o(2Co) => fo = 9o 

(1) * = 1 : ^i(2Co) + ^o(Xi) = ^ i ( Z ) = ^ i ( ^ ) = /i(Z.o) + / o ( i i ) , 

due to (0) => #i = / i 

(m — 1) k = m — 1 : 

flfm-l(2Co) + !7m-2(2Cl)+ " * + -0p(2Cm-2) = ^m-l(2Q = 

= *m-lQ0 = /m-l(io) + /m-2(2£l) + ' ' ' + fo(X*n-l), 

due to ( 0 ) , ( l ) , . . . , ( m - 1) => gm-X = / m _ i . 

Thus fj = gj, 0 < j <m — I and the unicity of the system is proved. 

Proposit ion 3.5 If {/y}™-"̂ 1 is a system of linear forms P0 into A and let 

{(j)k}^0 be the system of linear forms M into E defined as follows: 
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VX6M, X = J2T=oWxj; 

k 

MX) = ][>-;(*;), 0<k<m-l (**) 
i=o 

then the mapping </> = J2fc=o f̂c7?* *5 ^ e ^near form M —• A determined 
uniquely by the system {/?}. 

P r o o f If /o, • • •, /m- i : P —• IB- are linear forms then the system of mappings 
{(/>k} defined by (**) is evidently the system of linear forms M into E. Hands the 
supposition is correct. It is necessary to show that the mapping <j> is the linear 
form M —* A. According to P.3.2 it is sufficient to show linear forms defined by 
(**) have the property 3.2.(*) i.e.: 

V K E M ; 

(1) MvX) = 0, 

(2) ^(i720 = ^ - i ( 2 0 , l < * < m - l . 

LetX = E7="0
1V^r 

Then obviously (rjX)j = Xj_i, 1 < j < m and (i7K)o = 0. 

So we have: 

(1) Mv20[(**)] = M(riX)o) = /o(fi) = 0 
(2) MnXM**)] = Ef=o/*-y(('?2C)i) f/*(e) = o] = E?=i/*-y((»?2C)i) = 
= £ ) _ . /*-/G2Q_i) =- [j - 1 = h] = E*Io /(*-i)-i.(2C*) = ^ - i (20 -
From this <j> = £]JL0 ^ji?7, {<j>j} defined by (**) is the linear form. Due to P.3.1 

the unicity is evident. 

Definition 3.6 A linear form <j> M into A is called a linear form of order k 
(0 < ib < m) if: 

(1) V X G M ; <KX)er?*A, 

(2) 3 Y G M ; </>(Y) $ *r*+1A. 

In the special case k = 0 the linear form is called the epiform. 

Proposit ion 3.7 If <j> is a linear form of order k then there exists at least one 
epiform \ su^h that 

<t> = l k X -
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Proof Let <j> be a linear form of order k. We get clearly from this: 

0o = 4>i = • • • = ^ - i = 0 A 3Y G M; ^ ( Y ) + 0. 

Let us denote <j>* = <j>k + • • • + nrn~k~~l(j)rn„i. Then (j) = nk<j>*, though 0* is not a 
linear form from M to A generally. According to P.3.4 there is the system {,/}} 
of linear forms Po into M. fulfilling 3.4 (*) for the linear form (j). Since 0 is the 
form of order k from 3.4 (*) we have: 

/o = / i = . . . = /*.-! = 0 . 

Let us define the system {hj}JtTQ
l of linear forms P 0 into E as follows: 

ho = fki h\ = /jfc + l , . . . , / l m - f c - l = frn-l- (*) 

and linear forms bm-jt, • • •, Am- i a r e arbitrary. 
According to P.3.5 to the {hj} we can construct the system {xj} Dv means of 

3.5 (**) for which x = YlT=o Xj7/"7 1S ^n e n n e a r form. And due to (*) we get: 

<t>k(x) = fk(xQ) + fk-i(Xi) + • • • + /o(2£*) = fk(x0) = fc0(2Co) = xo(20 

**+i(20 = A+i(2£o) + h(X_) + 0 = /n(Xo) + A0(2Ci) = xi(20 

<t>m-l(X) = /m- l (No) + • • • + / f c ( I m - ^ l ) + 0 = 

= Am-Jb-l(2Co) + r- Ao(Km-ifc-l) = Xm-A;-l(N)-

Thus n^x = ^ ar-d since 3Y_ G M; (^(Y) = XoQQ / 0, x is t n e epiform. 

4 Kernels of linear forms 

Definition 4.1 Let M be a n-dimensional A-module (by C.2.1). 
A free (n — l)-dimensional submodule of M is called a hyperplane of the M, 

Theorem 4.2 If (j) is an epiform then there exists exactly one hyperplane Ji of 
the M such that 

3V = A'er (j). 

Proof Let £= {E_X). . . , Fn} be a basis of the A-module M. X_ = YA=I £--Ei *s 

a vector from M. Let us put 

^(Ej) = c*i, 1 < i < n. 

Then 4>(2Q = J2i=\£iCti. As (j) is an epiform there exists an c\j, 1 < j < n, 
being a unit. We may suppose that an is a unit. We will construct vectors 
Vi, • •, Y-n-i a s follows: 

Vj, 1 < j < n\ Vj = anE- - cxjEn. 
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Evidently each of them turns the form <j> to zero. Let us prove their linear 
independence over A: Let us suppose that 3/3j E A, 1 < j < n — 1; 

n—1 n—1 

53 & Zi = ^ => 53 /?iK£i - a ^ ) = o => 
i = i i = i 

n - l 

=> ^1(53(an(^^i) --Sn(ft«i))) = 2=> 
i = i 

n —1 n —1 

=> E ^ i i + (-««l(E/%«-i)).e« = e=> 
i=i i=i 

=>& = ... = /?„_!=(). 

Let us put 

N = [ F _ i , . . . , ] L . - 1 ] 

We show 3N = Ker <j>. 

1) Let X G X => X = Er="/ & £ => *(2Q = 0 => X 6 Ker <£ 
2) Let X_ G Ker <£. The X has the expression X_ = 53*=l 6I?; • 
We get 

ФШ = 5]č; tat Л ф(X) = 0 Л (V6 ЗA{; & = anA*) => 
ť=i 

n n —1, n —1 

=> o = 53 ţiai = an 53 Лt*a* + a ^ n ^ 5 3 Л i a i + ^ n = °5 

t = i t = i t = i 

n - l 

i.e. £n = - y ^ A,at. 
t = i 

Then of course: 

n n—1 n—1 

2L = 5 > £ . = ]Ţ>«A,të. - ( £ A<a,)l„ = 
ť = l ť = l ť = l 

n - 1 n - 1 

= 53 A.(a„Яť - or.ЯJ = 5 3 AiZ* => X Є K. 
t=i І = I 

Theorem 4.3 IfTi is an hyperplane of module M then there exists an epiform 
4> such that 

Ker <j> = N. 
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Proof Let {Vu . . . , Vn_x} be a basis of 5V. Then (by P.2.2) there is Vn _ M 
such that {V l 5 . . • , V n _ i , Vn} is a basis of M. Take X G M, X = £ " = 1 &&• 
Let us define a mapping 0 : M —> A by the relation 0(K) = £n • Then 0 evidently 
is the epiform. [0(Vn) = 1] with Ker 0 = Tsf. 

Consequence 4.4 Let 3NfC M. JN is a hyperplane of M if and only if there 
exists the epiform 0 such that 

JN" = Ker 0 

Theorem 4.5 Let 0, i/> 6e epiforms. Then Ker 0 = A'er xp if and onli/ zf there 
exists a unit e G A sucA Ma/ 0 = eij). 

Proof 
1) Let 0 = £"0 where e is a unit, then obviously Ker 0 =Ker -0. 

2) Let Ker 0 = Ker ip =jN" where X is (by T.4.2) the hyperplane of M. 
Let {Vi, • • - ,V n _ i} be a basis of JN. Then there exists a E_n G M such that 
\V,,...,V^_1,En] = M (by P.2.2). 
Then VX € M: 

n 

_=_3^Y i=>^(_)=en^(_n) and WX)=tmKEn)-
1 = 1 

As 0,-0 are epiforms 4>(En)} ifr(En) are units and therefore we can find £ for 
which 4>(E_n) — £-^(E-n) a n d thus 0 = ex/;. 

Theorem 4.6 If x : M —• A is a linear form of order k then there exists a 
hyperplane Jf OfM such that 

KerX = { N G M ; ^XE'N 

Proof If x is a form of order k then there is an epiform 0 such that x — r]k<t> 
(by P.3.7). Then by T.4.2 there exists J\"CM, ^'=Ker 0. 

1) ^ K G X ^ x ( i ) = ^0(K) = 0(^X) = O^N 6 Kerx 
2) Let X G Ker x => x(2Q = 0 => ^ 0 ( X ) = 0 => (j>(rjkX) = 0 => 17* X G JN". 
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