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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM 

1994 Mathematica XXXIII Vol.114 

G E N O M O R P H I S M S OF LATTICES AND 
SEMILATTICES 

IVAN C H A J D A , R A D O M Í R H A L A S 

(Received Janua ry 4, 1994) 

A b s t r a c t 

A concept of genomorphism was introduced by E. K. Blum. It is a 
congruence and subalgebra preserving mapping. We characterize all such 
mappings between two lattices or semilattices. 

K e y w o r d s : lattice, semi la t t ice, isomorphism, homomorphism, ge
nomorphism, isogenomorphism. 

M S C l a s s i f i c a t i o n : 08A05, 06B05, 06A12 

T h e concep t of homomorph ism was generalized by numerous au thors . In 
any case, it is reasonab le to ask abou t preserva t ion of subalgebras and induced 
congruences to make it app l icable for algebraic cons truc t ions. One of the mos t 

general modifica t ions was in troduced by E. K. B lum and D. R. Es tes [1], [2]: 

D e f i n i t i o n 1 Let A = (A)F)) B = (B)G) be algebras (no t necessary of the 
same type) . For M C A or N C H, deno te by A(M) or B(N) the subalgebra 
of A or B genera ted by the set M or N, respectively. A mapping <p : A —• B is 
called generative if for each n-ary f £ F and every a\). .., an of A it holds 

cp(f(a1}...,an)) e B((p(a1)y...}(p(an)). 

A mapp ing ip : A —> B is called congruential if i/>(a;) = i,1 (bi) for i = 1 , . . ., n 
imply ^ ( / ( a i , . . . , a n ) ) = i[)(f(b1:. . . , 6„ ) ) for each n-ary / £ F and a i , . . . , a n , 
6 i , . . . , 6n E -4. A mapp ing y? : A —> H is called a genomorphismus of an algebra 
.4 in to B if it is bo th genera t ive and congruen t ial . A mapp ing ip : A —> H is 
called an isogenomorphism of .4 on to >B if it is bijective genomorphism. 
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Remark 1 A generative mapping need not be congruential: if TL = (Z; +, —, O) 
is the group of all integers and 9? : Z —> Z is defined by p(a) = \a\ (the absolute 
value) then (p is generative since \x -f y\ G Z (|ar|, |y|), | — u| G 2£ (|x|, |y|) and 
O £ Z (\x\, \y\) but it is not congruential: 

| 1 | = | 1 | and |1 | = | - 1 | but | 1+ 1| ^0 = |l + ( - l ) | . 

On the other hand, for a bijection (p, if p is generative then it is congruential 
and hence an isogenomorphism. 

The following lemma is called a Genomorphism Theorem in [1]: 

Lemma 1 Let A — (A,F), B = (B,G) be algebras and p : A —> B be a 
surjective genomorphism of the algebra A onto B. Then the kernel 0 of p is a 
congruence and A/O is isogenomorphic to B. 

Hence, every surjective genomorphism p of A onto B can be expressed in 
the form 

tp — h o t/>. 

where h : A —> A/O is the natural (cannonical) homomorphism and ^ : A / 0 —•> 
H is an isogenomorphism. Hence, it is sufficient for our aims only to describe 
all isogenomorphisms of lattices and semilattices. 

Remark 2 If <p is a genomorphism of an algebra A onto B and C is a subalgebra 
of A then p(C) need not be a subalgebra of /?, see e.g. Note 1 in [1]. However, 
for each subset M of A, we have 

<p(A(M)) C B(vKM)) 

(the subalgebra of A or # generated by M or p(M), respectively) thus p is a 
"subalgebra preserving mapping". 

Now, we turn our attention to the case of lattices. Let L be a lattice and < 
its induced order. Elements a,b £ L are comparable if a < b or b < a, elements 
a, b are incomparable in the oposite case; this fact is expressed by the symbol 
a || b. If p is a mapping of L into another lattice and C is a subset of L, 
denote by p\C the restriction of p onto C. By L(a, b) is denoted the sublattice 
generated by a, b. Evidently, for a ^ b we have: 
if a, b are comparable then L(a, b) — {a, b}, i.e. card L(a, b) — 2, 
if a, b are incomparable then L(a, b) — {a,b,a f\b,a\l b}, i.e. card L(a, b) — 4. 

Lemma 2 Let L\,L2 be lattices and p : L\ —> L2 a bijection. Then for 
a, b G L\ we have 

(a) if a,b are comparable then 

<p(a A b) G L2(p(a),p(b)) and cp(a V b) G L2(p(a), <p(b))\ 
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(b) if a || 6 and <p is an isogenomorphism then also <p(a) \\ <p(b) and the 

restriction <p\L\(a,b) is either an isomorhism or a dual isomorphism of 

Li(a,6) onto L2(<p(a),<p(b)). 

P r o o f (a) For comparable a, 6 we have {a V 6, a A 6} = {a, 6} whence the 

assertion is t r iv ial . 

(b) Suppose a || 6. Then a / a A 6 7̂  6. If <p(a) < <p(b) then 

L2(<p(a),<p(b)) = {<p(a)!<p(b)}. 

Since <p is an isogenomorphism, we have <p(a A 6) E L2(<p(a), <p(b)) thus either 

tp(a A 6) = <p(a) or <p(a A 6) = <p(b) 

which contradicts to the fact tha t <p is a bijection. Hence, we have also 

<p(a) || <p(b), i.e. card L2(<p(a), <p(b)) = 4 

thus 
<p(a) £ <p(b) ± <p(a) V <p(b) £ <p(a) ± <p(a) A <p(b) ? <p(b). 

Hence, it remains only 

<p(a V 6) = <p(a) V <p(b) and <p(a A 6) = <p(a) A <p(b) 

or 
<p(a V 6) = <p(a) A <p(b) and <^(a A 6) = </?(a) V <p(b) 

prov ing (b) . D 

C o r o l l a r y 1 Let L\,L2 be lattice and <p : Li —• L2 a bijection. If L\ is a chain 
then <p is an isogenomorphism of L\ onto L2. 

It is a t r iv ia l consequence of L e m m a 2 (a) . 

R e m a r k 3 If <p : L\ —* L2 is an isogenomorphism then <p~l : L2 —•> L\ need 
not be an isogenomorphism, see the following: 

E x a m p l e 1 Let L\, L2 be four element latt ices such tha t L\ is a chain but L2 

not . Then , by the Corollary, <p : L\ —> L2 visualized in Fig. 1 is an isogenomor
phism bu t , by (b) of Lemma 2, <p~l is not an isogenomorphism. 

<p(c) 

Ly 

<p(a) o( > f(d) 

и 

Fie. 1 
<p(b) 
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Example 2 If p : L\ —> L2 is an isogenomorphism then t^"1 need not be an 
isogenomorphism even if Li is not a chain. One can it check in the following 
Fig. 2, where p : N5 —> M3: 

c <f(c) 

Fig. 2 

Theorem 1 Let L\,L2 be lattices and <p : L\ 
conditions are equivalent: 

(1) p is an isogenomorphism; 

L2 a bijection. The following 

(2) if p(x) < (p(y) then x,y are comparable and if <p(x) \\ p(y) and x \\ y then 
p\L\(x,y) is either an isomorphism or a dual isomorphism of L\(x,y) 
onto L2(p(x))p>(y)). 

Proo f (1) •=> (2): If p(x) < p(y) then card L2(p(x), <p(y)) = 2. Suppose x \\ y. 
Then cardF i(x,y) = 4 but, by (b) of Lemma 2, <p\L\(x,y) is a bijection of 
L\(xyy) onto L2(p(x),p(y)), a contradiction. Thus x}y are comparable. 

If p(x) || <p(y) and x \\ y then it follows immediately by (b) of Lemma 2. 

(2) => (1): Suppose <p : L\ —•> L2 be a bijective mapping satisfying (2) and 
x,y£ L\\ 

(i) if x, y are comparable then 

p(x Ay) E L2(<p(x), p(y)), p(x V y) £ L2(<p(x), p(y)) (*) 

by (a) of Lemma 1. 

(ii) if x || y and p(x) \\ <p(y) then (*) follows directly by (2). 

(iii) the case x \\ y and p(x)} p(y) comparable is excluded by the first condition 
of (2). 

In all possible cases, <p satisfies (*) thus it is an isogenomorphism. • 

For semilattices, the results are similar. Denote by S(a,b) the semilattice 
generated by a, 6, i.e. 5(a, b) = {a, b, a A b} for a || b and 5(a, b) = {a, b} for a, b 
comparable. 
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Lemma 3 Let S1.S2 be f\-semil attic es and <p : S\ -+ S2 be a bijection. For 
a, b £ Si , we have: 

(a) if a,b are comparable then <p(a A b) £ S2(<p(o),(p(b)); 

(b) if a || b and <p is an isogenomorphism then (p(a) \\ <p(b) and 9?|Si(a,b) is 
an isomorphism of S\(a,b) onto S2(<p(a), <p(b)). 

The proof of (a) is the same as those of Lemma 2 for lattices. For (b), we 
also use that of Lemma 2 but the case of dual isomorphism is excluded because 
we have only one binary operation. 

By using Lemma 3 instead of Lemma 2, we can modify the proof of Theo
rem 1 to obtain: 

Theorem 2 Tel S1.S2 be semilattices and <p : S\ •—> S2 a bijection. The fol
lowing conditions are equivalent: 

(1) (p is an isogenomorphism; 

(2) if (p(x) < (p(y) then x < y and if (p(x) \\ <p(y) and x \\ y then <p\S\(x,y) is 
an isomorphism of S\(x,y) onto S2(<p(x),(p(y))-
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