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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM 

1994 Mathemat ica XXXIII V o l . 1 1 4 

INVOLUTIONS AND ITERATES OF C E N T R A L 
DISPERSIONS 

G R A N T B . G U S T A F S O N AND M I R O S L A V L A I T O C H 

(Received June 22, 1993) 

A b s t r a c t 

The problem was motivated by the theory of central dispersions as 
developed by Boruvka and his students. A model problem is discussed 
which relates classical involutions </>(</>(t)) = t and central dispersion func
tions. Some interesting examples of involutions are given which illustrate 
the possible geometry of the graph of an involution </>. Unsolved problems 
are discussed in the paper's summary. 

K e y w o r d s : Centra l dispersion function of the first kind, invo lution. 

M S Class i f icat ion: 34A30, 39B20 

Introduction 
A central dispersion is a function / defined for a differential equat ion 

y"+p(i)y = 0 

which precisely describes the zeros of solutions. In part icular , a basic central 

dispersion of the first kind is a function / which associates to the point t = to 

the next zero t\ of a solution y which vanishes at t = to. Briefly, / ( t o ) = t\ 

means t h a t there is a nontr ivial solution y such t h a t y(to) = y(t\) — 0, y(t) > 0 
for to < t <t\. 

If a solution exists with infinitely many zeros, then / is defined on the 
entire line and the i terates fk (t) cycle th rough the successive zeros of a solut ion 
vanishing at the point t. 
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If only finitely many zeros exist for some solution, then / is defined on a 
half-line (—00, a) and lim^_^a_ f(t) = 00. The discussion might end here by 
setting f(t) = 00 for t > a. Instead, we adopt a global viewpoint, and argue 
that a solution vanishing at t > a exists on the whole real line, therefore the 
next zero to the right means either 00 or else the first zero to the right of —00. 
We adopt the latter definition. 

An illuminating special situation is where the dispersion / has domain 
(—00, 0) and lim^-^-oo f(t) — 0- The new definition of the dispersion on (0, 00) 
is given by the function 

Ф(t) f(t) t<0, 
ГҶt) t>o. 

The new function (j> lacks definition at t = 0. Define </>(0) = 0. The justification 
is that a solution y exists vanishing only at t = 0 and t = zbco. The resulting (j) 
is an involution: 

4>(4>(t)) = t 

This construction can be repeated for the case of a solution with exactly m 
zeros on (—00,00). Under appropriate conditions the function (j) will satisfy 
4>m(t)=t. 

A precise definition of the dispersion / is made in terms of the phase function 
a(t). Let a basis of solutions u) v of y" + p(t)y = 0 be given. Define the phase 
function by tan(a(tf)) = u(t)/v(t). Define h(t) = t + 7r, / = a~l o h o a. The 
dispersion function / is defined on (—00, a) where lim£_a_ a(-0 ~ 00. Further, 
/ is increasing and continuous. The inverse of / is given by a"1 o h~l o a. It is 
emphasized that the iterative formula <j)m(t) = t is true only for a limited class 
of dispersions, and not for all dispersions. 

It is our purpose here to study involutions geometrically and to give inter
esting examples of the possible geometry of the involution </>. The results apply 
to a class of basic central dispersions satisfying <j)(<j)(t)) = t. The results extend 
to basic dispersions for which (/>m(t) = t. Unsolved problems are discussed in 
the summary at the end of the paper. 

Involutions and Conjugations 

Definition 1 (Laitoch 1992) The class M is the set of all functions <f> defined 
on the real line such that <j> is strictly monotonic and continuous. 

Definition 2 A function <j> defined on the real line such that (j)((j)(x)) = x is 
called an involution. 

Theorem 1 Let (j) satisfy <t>(<^(x)) = x for —00 < x < 00 and let (j) be increas
ing. Then <j)(x) = x. 
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Proo f This result is proved in Laitoch (1992) by applying <j> to the two in
equalities x < <j)(x) and <j>(x) < x, ultimately concluding that only <f>(x) = x can 
hold. Continuity is not an issue in the proof. • 

Theorem 2 Let <fi satisfy <j>(<j)(x)) = x for —oo < x < oo. Then 

(a) If <j)(x\) = <t>(x'2), then X\ = x<i- Therefore, <f> is one-to-one. 

(b) The range of (j) is (—00,00). Therefore, <f> is onto. 

In particular, if <f> E M, then 

lim <f)(x) — — lim <j>(x) = ±00. 
x—>oo ' a;—*- —00 

Proo f To prove (a), assume </>(xi) = ^(#2)- Apply <j> to both sides and use 
4>((j)(x)) = x to obtain x\ = £2-

To prove (b), consider <j>(x) = u to be solved for x. Define x = 0(g). Then 
(j)((j)(y)) — y implies x is the solution for given y. • 

Theorem 3 Let (f) e M, a e M, <t>((/>(x)) - x. Define ip = a~l o (j> o a. Then 
ip E M and vb(ip(x)) = x. 

Proo f The monotonicity and continuity requirements are the result of composi
tion theorems for monotonic and continuous functions. The relation ip(i/;(x)) = x 
follows because i[) oij; = a~x ocf)oao a~1 ocj)oa and <f> o <j> is the identity map. • 

Corollary 1 (Laitoch 1992) Let (j) ~ M be an involution. Then for any 
number k, the functions —k -f <j)(x + k) and —<j)~l(—x) are involutions in M. 

Proo f In the first case take a(x) = x -f- k and in the second take a(x) = —x. 
Apply the theorem to <j> and (/>_1, respectively. • 

DifFerentiable Involutions 

Let (j) be a given decreasing continuous involution: <j>(<j>(x)) — x for all real x. 
Then <j> admits a canonical representation 

6(r) __ / / (*) * < a, 
* W - \ / - i W ^ > a ? 

where (j)(a) — a and / is decreasing and continuous on (—00, a]. The canonical 
representation can be used to produce numerous examples of involutions. 
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Example An involution (f)(<fr(x)) = x with n continuous derivatives. 

^={f
f%) HI: /(«)-=«*---

Let 2ra > n. Let 0 be given in its canonical representation above. The 
function / decreases on (—oo,0] and it is infinitely differentiable. It will be 
shown below that <j> is 2ra — 1 times continuously differentiable. The technical 
trouble is the matching of derivatives of / and f~l at x — 0. The calculation is 
not benign and it emerges as a surprise that the even derivatives already matchl 
The kind of calculation expected has been observed by Lorch and Szego [5], 
p 57. 

In order that <j> be continuously n-times differentiable on the real line it is 
necessary and sufficient that / be n-times differentiable on (—oo,a] and 

(i)'(/)(a) = (i)'(r')(a) 

for 1 < i < n — 1. 
Let g — f~l and consider the relation 

g'(f(x)) = l/f'(x). 

The relation can be differentiated successively to obtain a formula for g^n\f(x)) 
and ultimately g(n\a), because f(a) ~ a. The objective is to determine condi
tions on the numbers 

/,. = / « ( a ) , i = 0 , l , . . . , n 

such that (&Y(f)(a) = (£Y(f-i)(a). . 
A formal algorithm for the sequence {/n} can be expressed as follows: let 

V = (l/f'(x))&, then define 

/ l = - l , fn=Vn(X)\x = a . 

The recursion is implicit the right side Vn(x) contains a term with factor 

/(n)M-
It is possible to isolate the only term in Vn(x) \x-a which contains fn\x). 

It is (-l)un+1 fn\x) where u(x) = l/f(x). At x = a, u = l/f(a) = - 1 . If 
n is even, then the coefficient of fn is 1 and for n odd the coefficient is —1. 
Therefore, no condition exists for fn when n is even. But if n is odd, then fn is 
determined in terms of fk for even values of the index k = 2,4, .., n — 1. 

The recursion was solved on a computer algebra system for n < 15 and it 
was found that, /2, /.4, /6, fs, / io, / i2, /14, • • -are entirely arbitrary while for 
odd subscripts the following relations must hold: 
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h = a  

Һ = - 1  
f — 3 f 2 

/з — ~2Һ  
h = -f/2/4 + 15/l 
fi = - 1 4 / 2 / 6 + ^ / 3 / 4 

h = 2205/6/|+7875/1/1-§208845/4/f+ 

|411075/f - §45/8/2 - 105/6/4  

/11 = §197505 hhh2- 90748350 / 2

1 0 - 231 / 6

2 -

§1943865/6/2

5-421881475/4

2/2

4 +§30195/ 8 / 2

3 + 

§317625/4

3/2 + §201611025/4 / 2

7 - 33 / 1 0 / 2 -

§495 / 8 / 4 p * " ' ^ J4  

75685059450/2

12 + §24552002475/4

2/2

6 + §1756755/8/4/2

2+ 

§3888885/ 6/ 4

2/ 2- 123288165/2

4/6/4- §1001L 0 / 4 -

/iз — 

z „ „ „ . > . , _ „ _ . , _ „ . , z „ ^ „ „ ^ 

§755179425/2

3/4

3 - §91 ff /2 + 21021 / 1 0 / 2

3 - §3003 /8 /6 + 

§1576575/4

4 +§1655268615/ 6/ 2

7- 45121576500 / 2

9 / 4 + 

399399 / 6

2 / 2

2 - §24459435/8/2

5  

/i6 = §1979129777625 / 4

3 / 2

5 + 16291275 / 6 / 4

3 -

§2418757716375/2

9/6 - 4 0 0 4 / 1 0 / 6 + §35041181175/2

7/8-

§21643387140375 / 2

8 /4 2 + 50505 /1 2 / 2

3 + 

§136589610031875/2

n/4 - 910/ 1 2/ 4 - 6 0 / 1 4 / 2 + 

§21846825 /8 / 4

2 / 2 - 932431500 /8 f^í / 2
4 + 

19969950/6
2/4/2 + §454692112875/6/4/2

6-

7687379700/6/4
2/2

3 - §867716649174375/2
14+ 

1546545 /10 h h2 + 4459455 / 8 f6 / 2
2 - §6435/8

2-

29144115/10/2
5 - §17917774875/4

4/2
2 -822026205/6

2/2 

The referee has kindly suggested a succinct proof of the theorem below based 
upon Lemma 2A of Lorch and Szego [5]. The idea is to obtain from [5] a formula 
for /2A.+1 as a sum of homogeneous polynomials whose terms have the form 
~Yln=2(fn)

an with c an integer. Induction is applied to this formula to show 
that /2ib+i is a polynomial in the variables / 2 r . . . ,/2& with rational coefficients 
of the form p/q (q is a power of 2). 
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Theorem 4 Consider the continuous involution 

__ f f(x) x < a, 
f~г(x) x > a, 

ф(x)~ 

where (j)(a) = a and f is decreasing and of class CN on (—oo,a]. Let fk = 
f(k\a) for k > 1 and define V = (l/f(x))j^. The involution <j> will be of class 
CN if and only if f\ = —1 and 

fk =Vk(x)\x=a , k = 2,3,. . . ,N . 

where the /2fc are arbitrary and / 2 ^+i is a polynomial with rational coefficients 
in the variables / 2 ; f^, • • .without constant term. 

R e m a r k 1 The odd terms are determined by the implicit relation 

hk+i=V2h+1(x)\x=a 

where V = (1 /j'(%))-£:• The particular choice f\ = —1 and f- = 0 for i > 2 
always satisfies the recursion and makes (j) have N continuous derivatives. 

Example An involution of class C2 that is not of class C3. 
Define the function <j> by the formula 

,(x)=f M l - * ) x<0 
n } ~ \ 1 - exp(x) x>0 

The function f(x) = ln(l — x) is defined for x < 0 and f(0)=0. It is decreasing 
and infinitely differentiable. The inverse of / is 1 — exp(x), defined on x > 0. 

The derivatives f{ = /(O(0) are fx = - 1 , / 2 = - 1 , f3 = - 2 , / 4 = - 6 , . . ., 
fn — — (n — 1)!. As the theory suggests, / 2 and / 4 can be specified arbitrarily. 
However, the odd derivatives are determined: f\ = — 1, f3 = ( ~ 3 / 2 ) / | = —3/2. 
This contradiction to the calculated value of /3 = —2 shows that / is of class 
C2 but not of class C3. 

Infinitely Differentiable Involutions 

Given a differentiable involution </>, assume (p(a) = a and (j) decreasing on 
(—oo,a). For <j> to be infinitely differentiable the canonical representation 

M(T\ __ / /(*) x < a> 

must satisfy / E C°°(—oo, a]. In order that / and f~l have matching derivatives 
of all orders at x = a certain relations must be satisfied for the odd order 
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derivatives (see the theorem above). It was remarked in the theorem that the 
conditions are satisfied provided f'(a) = — 1 and fn\a) = 0 for n > 1. 

Example An infinitely differentiate involution. 
Let h(x) = exp(—l/x2)g(x) where g is positive and integrable on the line 

and of class C°°(—oo, oo). Define f(x) = fQ L h(s)dsdt — x and let 

., , f f(x) x < 0 , 

^ H J H o x>o, 
It is verified that / is infinitely differentiable, f(0) = 0, f(x) < 0 for x < 0, 
/(n)(0) = 0 for all n > 1. Therefore, <j> is an infinitely differentiable involution. 

Totally Discontinuous Involutions 

An involution <f)(<j)(x)) = x necessarily maps the line onto the line and is one-
to-one but it need not have monotonicity or continuity properties. The class of 
discontinuous involutions is rich and interesting. 

Example An involution which is discontinuous at every point. 
Define the function <f> by the formula 

,,\_f% x rational 
^ ' \ —x x irrational 

It is evident that <j> is continuous nowhere and (/)(<j)(x)) = x. 

Example A totally discontinuous involution of complexity. 
Let {Ei}ftl be a collection of disjoint sets whose union is the real line. Define 

., v / x x G Ei) i even . 

*W={ -x *££., i odd ' * = - . - . -

It is evident that <j> satisfies <f)(<f)(x)) = x and therefore it is an involution. To 
make <j> discontinuous choose the even sets to have union the set of all rational 
numbers. 

Piecewise Continuous Involutions 

An involution <j)(<j)(x)) = x necessarily maps the line onto the line and is one-
to-one. We assume here the involution consists of countably many graphs each 
of which is continuous. It is this class of involutions that arise naturally from 
the theory of dispersions of second order linear differential equations. The class 
of piecewise continuous involutions is rich with structure and it is possible to 
characterize them in a simple way. 
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Example A piecewise continuous, piecewise increasing involution. 
Define the function <j> by the formula 

( x x £ [ - 2 , - l ] U [ [ l , 2 ] 
<f)(x)= < x - 3 a? € [1,2] 

[ x + 3 x G [ - 2 , - l ] 

The involution equation <j)(<j)(x)) = x is true because the function x -f 3 is the 
inverse of x - 3 as a mapping from [1,2] one-to-one onto [ - 2 , - 1 ] . 

Example A piecewise continuous involution that is not monotone. 
Define the function <f> by the formula 

( x x g [ -2 , -1 ] U [[1,2] 
cj)(x)= < -x a ? G [ l , 2 ] 

{ -x are [ -2 , -1 ] 

The involution equation follows because the function —x is the inverse of — x as 
a mapping from [1, 2] one-to-one onto [—2, — 1]. The derivative of cp is either 1 
or —1 and therefore 6 is not monotone. 

Summary 

Involutions and central dispersions are related in a special case that gives insight 
into the possible complexity of dispersion functions. The class of piecewise con
tinuous involutions is more closely related to differential equations than might 
be initally imagined. 

An unsolved problem is to describe the basic fundamental dispersion / ge
ometrically without solving the differential equation. It is accurate to say that 
the geometry of dispersions has been studied in the literature for many years 
and major geometrical properties such as monotonicity and continuity have been 
discovered. 

In a practical sense a differential equation can be solved only on a given 
finite interval of reasonable size. Therefore, the dispersion / is not computable, 
in general. 

It is possible to produce by computer a graph of / on (—00,00), because 
graphical representations require only a finite number of computations of f(t). 
Each computation f(t) requires the numerical solution y of an initial value 
problem and a search for the first sign change of y. Algorithms to search for 
the first sign change of a numerical solution can be obtained by alteration of 
standard code for numerical solution of differential equations. Research versions 
of such code exist at some computer sites. 
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