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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENS1S FACULTAS RERUM NATURALIUM 

1994 Mathemat ica XXXIII Vo l . 114 

A N O T E ON H O M O T O P Y IN UNIVERSAL A L G E B R A 

R A D O M Í R H A L A S 

(Received Augus t 18, 1993) 

A b s t r a c t 

In this paper necessary and sufficient conditions are given under which 
an algebra with one n-ary operation (n > 2) is isotopic to algebra with 
unit. The main theorem gives a generalization of well known Albert's 
theorem. 

K e y w o r d s : isotopy, a lgebra with uni t . 

M S Class i f i ca t ion: 06A99 

T h e concept of homotopy in universal algebra was introduced and studied 
by Petrescu in [1]. T h e aim of this paper is to give necessary and sufficient 
condi t ions under which an algebra wi th one n-ary opera t ion (n > 2) is iso topic 
to algebra wi th uni t . 

For an algebra srf = (A; F) let us deno te the n-ary opera t ion / E F by the 

symbol f \ \ 

D e f i n i t i o n 1 Let srf= (A\ F) be an algebra wi th the underlying set A and the 
set of fundamen tal opera t ions F. Let £% = (H, F) be an algebra of the same 
type and n be the grea tes t arity of opera t ions of F. If there exist an (n-f l ) - tuple 
of mappings 0, (f>ii..., cf>n : A —* B satisfying the following condi t ion : 

(k) 
\/k < n \/g\ e F Vxi,x2i..., -c* E A : 

<P(9A \XU • • •, -cjfc)) = 9B\MXI)> • • • > <f>k(xk)), 

then the (n + l ) - tup le (0 , 0 i , . . . , <j>n) is called a homotopy from the algebra srf 

to the algebra £%. If, moreover, every of mappings 0, <f>i,. . . , <j)n is a bijec t ion, 
then the (n -f l ) - tuple ( 0 , 0 i , . . . , c/>n) is called an isotopy from algebra srf to the 

algebra £%. 

If there exists an isotopy from algebra srf to algebra £%^ then we say that 
algebras j ^ a n d £% are isotopic. 
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Definition 2 An algebra szf = (A) F) is called an algebra with unit iff there 
exists e £ A such that the following condition holds: 

Vn £ N (n > 2), Vf^n) £ F Vx £ A : 

f^\x, e, e , . . . , e) = f^n)(e, x> e , . . . , e) = . . . = /^n )(e, e , . . . , e, a?) = x. 

Remark 1 If an algebra szf is a groupoid, then sz? is an algebra with a unit 
iff sz? is a groupoid with neutral element. A unit element of an algebra szf is 
determined uniquely (if it exists). 

Theorem Let szf'= (A; / ) 6e an algebra with one n-ary operation f (n > 2). 
Fhe?i the foilowing conditions are equivalent: 

(1) there exists an isotopy from the algebra szfto some algebra £$ with unit 

(2) there exist elements x\, x*2) ..., x*n of A such that for all i £ { 1 , . . . , n) the 
mappings x —> f(x\, . .. , x*_l) x, x*+1, . . ., xn) are bijective. 

Proo f (1) => (2) Let (0, <^i,..., <f>n) be an isotopy from algebra szf to algebra 
^ — (B, f) and e £ B be the unit of £8. Let us consider the elements x* £ A 
with x* = <^r1(e) for i G {1, 2,. . . , n}. It is easy to verify that the elements x* 
are desired elements in the condition (2) of the Theorem. 

(2) => (1) Let </> : A —+ A be an arbitrary bijection. Let us define for each 
i £ {1, 2 , . . ., n) mappings fa : A —+ A as follows: 

(3) (j)i(x) = 0( f(xj, x*2). . . , £*_!, x, x*+1, . . . , < ) ) . 

We can define an n-ary operation g on A by the rule: 

(4) g(<l>l(xi),-->An(Xn)) = ^ ( / ( a ? i , . . . , a ? n ) ) . 

This operation is well defined since all mappings </>z- are bijections. 
It is clear from (3) that for each i, j G {1, 2 , . . ., n) holds 

(5) M*i) = M*j) = *-

Now, let £8 = (A\g). The condition (4) implies that the (n + l)-tuple 
(<j)) <j>\y..., </>n) is an isotopy from the algebra szf into the algebra ^*. According 
to the conditions (2), (4) and (5) , it is clear that the element e is the unit in 
the algebra ^ . • 

Remark 2 It is evident, that the surjectivity of mappings in the condition (2) 
is a consequence of injectivity whenever the underlying set of the algebra szf is 
finite. 
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Therefore we obtain : 

Corollary 1 A groupoid <$ is isotopic to a groupoid with unit iff there are 
a,b E G such that the mappings Fa, ix& are bijections, where 

La{x) = ax*, Ra{x) = %b 

for all x Є G. 

It is known that any element in a finite quasigroup is as right as left 
cancellable. Moreover, the condition (ii) of (2) holds also in the case of an 
infinite quasigroup because a quasigroup is a unique-divisible groupoid. There
fore it holds: 

Corollary 2 For each quasigroup there exist an isotopy into a loop. 

R e m a r k 3 Corollary 2 is well known Albert's theorem for quasigroups and 
loops, see [2]. 

It is clear, that an arbitrary element of the set A can be taken as the unit 
of the algebra £$ since the mapping <j> can be defined arbitrarily in the proof of 
the Theorem. 

E x a m p l e 1 Let <S' = (G; o) be a groupoid, where G = {a,b,c} and the opera
tion o is given by the following table: 

o a b c 
a b a b 
b b c a 
c a c c 

Let (j) : G —• G be a bijection, (/){a) = c, <j>{b) = a, <f>{c) = b. The element b or c 
is left or right-cancellable element. According to the Theorem, the groupoid <$ 
is isotopic to a groupoid with unit. 

Let's take x\ = 6, x*2 = c, <j>\{x) = </>{x o c), ^{x) = <f*{b o x). Then 
(f>i{b) = <^2(c) = </>(& ° c) = 0(a) = c, hence c is the unit of £%. The operation on 
the groupoid 38 = {A\ • ) is given by the following table: 

D a b c 
a a c a 
6 6 b b 
c a b c 
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