Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematic

Václav Havel; Miloslava Sedlářová

Golden section quasigroups as special idempotent medial quasigroups

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 33 (1994), No. 1, 43--50

Persistent URL: http://dml.cz/dmlcz/120314

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

GOLDEN SECTION QUASIGROUPS AS SPECIAL IDEMPOTENT MEDIAL QUASIGROUPS

Václav Havel, Miloslava SEDLÁřová

(Received November 30, 1993)

Abstract

After some modification of Toyoda's representation theorem for idempotent medial quasigroups we characterize the role of golden section quasigroups according to this theorem.

Key words: quasigroup: medial, idempotent, linear over a commutative group.

MS Classification: 20N05

1 We deduce some modification of Toyoda's theorem, following [1], pp. 240-244

An element a of a groupoid (G, \bullet) is said to be idempotent if $a \bullet a=a$.
A groupoid (G, \bullet) is said to be idempotent if all elements of it are idempotent. It is called medial if it satisfies the identity $a b \bullet c d=a c \bullet b d$.

A groupoid (G, \bullet) is called linear over a commutative group $(G,+)$, with the dilatation φ if there is an automorfism $\varphi \neq \mathrm{id}_{G}$ of $(G,+)$ such that it holds $x \bullet y=y+\varphi(x-y)$ for all $x, y \in G$.

If (Q, \bullet) is a quasigroup and e some element of it, then we define the map $Q \rightarrow Q, x \mapsto{ }^{e} x$ such that the image ${ }^{e} x$ is the solution $e \backslash(x \bullet e)$ of the equation $e \bullet{ }^{e} x=x \bullet e .{ }^{1}$

```
    \({ }^{1} \backslash\) and / are accompanying operations of \(\bullet\), i.e. \(x \bullet y=z \Longleftrightarrow y=x \backslash z \Longleftrightarrow x=z / y\)
for all elements \(x, y, z\) of a quasigroup \((Q, \bullet)\)
```

Lemma 1 Every medial quasigroup (Q, \bullet) satisfies the "cross rule"

$$
\begin{aligned}
& a_{1} a=b b_{1} \\
& a_{2} a=b b_{2}
\end{aligned} \Rightarrow a_{1} b_{2}=a_{2} b_{1}
$$

Proof We have

$$
a_{1} b_{2} \bullet a b=a_{1} a \bullet b_{2} b=b b_{1} \bullet b_{2} b=b b_{2} \bullet b_{1} b=a_{2} a \bullet b_{1} b=a_{2} b_{1} \bullet a b .
$$

Thus $a_{1} b_{2} \bullet a b=a_{2} b_{1} \bullet a b$ and by cancellation from right we obtain $a_{1} b_{2}=a_{2} b_{1}$.
Lemma 2 Every medial quasigroup (Q, \bullet) satisfies the "pseudocommutativity rule" $a \bullet{ }^{e} b=b \bullet{ }^{e} a$ where e is an arbitrary idempotent element of Q and a, b are arbitrary elements of Q.

Proof By cross rule applied to $a e=e^{e} a, b e=e^{e} b$.
Lemma 3 Let (Q, \bullet) be a medial quasigroup with an idempotent element e. The binary operation \circ_{e} defined by $(x e) \circ_{e}(e y)=x y$ for all $x, y \in Q$ leads to a commutative group $\left(Q, \circ_{e}\right)$ with neutral element e.

Proof We see that $\left(Q, \circ_{e}\right)$ is a principal loop isotop of (Q, \bullet) and that e is its neutral element. For all $a, b \in Q$ we have

$$
a \circ_{e} b=(a / e) \bullet{ }^{e}(b / e)=(b / e) \bullet{ }^{e}(a / e)=b \circ_{e} a
$$

(as $\left.a=(a / e) \bullet e=e \bullet{ }^{e}(a / e), b=(b / e) \bullet e=e \bullet{ }^{e}(b / e)\right)$. Similarly we obtain for all $a, b, c \in Q$

$$
\begin{gathered}
(a / e) \cdot{ }^{e}(b / e)=d_{1} e=e^{e} d_{1}=(b / e) \cdot{ }^{e}(a / e) \\
(b / e)^{e}(c / e)=d_{2} e=e^{e} d_{2}=(b / e)^{e}(c / e)
\end{gathered}
$$

so that $d_{1}{ }^{e}(c / e)=d_{2}{ }^{e}(a / e)=(a / e)^{e} d_{2}$ and finally

$$
\begin{gathered}
\left(a \circ_{e} b\right) \circ_{e} c=\left((a / e)^{e}(b / e)\right) \circ_{e} c=d_{1}^{e}(c / e) \\
a \circ_{e}\left(b \circ_{e} c\right)=a \circ_{e}\left((b / e)^{e}(c / e)\right)=(a / e)^{e} d_{2}
\end{gathered}
$$

Thus from $d_{1}{ }^{e}(c / e)=(a / e)^{e} d_{2}$ we get

$$
\left(a \circ_{e} b\right) \circ_{e} c=a \circ_{e}\left(b \circ_{e} c\right)
$$

Lemma 4 Let (Q, \bullet) be a medial quasigroup with an idempotent element e. The "mixed mediality rule." holds

$$
(a b) \circ_{e}(c d)=\left(a \circ_{e} c\right)\left(b \circ_{e} d\right) \quad \text { for all } a, b, c, d \in Q
$$

Proof After a routine arrangement the expression $(a b) \circ_{e}(c d)$ goes over onto $\left({ }^{e} a^{e} b\right)\left({ }^{e}\left({ }^{e} c\right){ }^{e}\left({ }^{e} d\right)\right)$ and $\left(a \circ_{e} c\right)\left(b o_{e} d\right)$ onto $\left({ }^{e} a^{e}\left({ }^{e} c\right)\right)\left({ }^{e} b^{e}\left({ }^{e} d\right)\right)$. Thus using the mediality we obtain the requisted equality.

Lemma 5 Let (Q, \bullet) be a medial quasigroup with an idempotent element e. Then the translations $R_{e}: x \mapsto x \bullet e, L_{e}: x \mapsto e \bullet y$ are commuting automorphisms of the group $\left(Q, \circ_{e}\right)$.

Proof According to mixed mediality rule we have

$$
x e \circ_{e} y e=\left(x \circ_{e} y\right) e, \quad e x \circ_{e} e y=e\left(x \circ_{e} y\right) \quad \text { for all } x, y \in Q
$$

so that R_{e} and L_{e} result as automorphisms of (Q, \circ_{e}). Furthermore

$$
R_{e} L_{e}(x)=e x \bullet e, \quad L_{e} R_{e}(x)=e \bullet x e \quad \text { for all } x \in Q
$$

and, by mediality, $e x \bullet e e=e e \bullet x e$ and consenquently $e x \bullet e=e \bullet x e$.
Theorem 1a If a quasigroup (Q, \bullet) is a medial and contains an idempotent element e then there is a commutative group (Q, \circ) which admits commuting automorphisms σ and τ such that

$$
x \bullet y=\sigma(x) \bullet \tau(y) \quad \text { for all } x, y \in Q
$$

Proof Let (Q, \bullet) be a medial quasigroup with an idempotent element e. Then by Lemmas $3-5$ for $\sigma=R_{e}, \tau=L_{e}, \circ=\circ_{e}$ we get the commutative group (Q, \circ) having all the properties requested.

Theorem 1b Let a groupoid (Q, \bullet) arise from a commutative group (Q, \circ), which admits commuting automorphisms σ and τ by the rule

$$
x \bullet y=\sigma(x) \circ \tau(y) \quad \text { for all } x, y \in Q .
$$

Then (Q, \bullet) is a medial quasigroup with an idempotent element e such that $\sigma=R_{e}$ and $\tau=L_{e}$.

Proof Let there exist a commutative group (Q, \circ) with commuting automorphisms σ, τ satisfying $x y=\sigma(x) \circ \tau(y)$ for all $x, y \in Q$. Then the groupoid (Q, \bullet) is an isotop of (Q, \circ) and as such it is a quasigroup. On the other side (Q, \circ) is a principal loop isotop of (Q, \bullet) so that $\sigma=R_{u}$ and $\tau=L_{v}$ for convenient elements $u, v \in Q$. Since σ, τ are automorphisms of (Q, \circ), the neutral element e of (Q, \circ) satisfies equalities $e u=v e=e, e e=e u \circ v e=e \circ e=e$. Herefrom we obtain $u=v=e$. Thus for all $a, b, c, d \in Q$ we have

```
ab\bulletcd=(ae\circeb)(ce\circed)=
    =((ae\circeb)e)\circ(e(ce\circed))=(ae\bullete)\circ(eb\bullete)\circ(e\bulletce)\circ(e\bulleted).
```

Similarly we can deduce that

$$
a c \bullet b d=(a e \bullet e) \circ(e c \bullet e) \circ(e \bullet b e) \circ(e \bullet e d) .
$$

Since R_{e} and L_{e} commute, we obtain $e \bullet x e=e x \bullet e$ and consequently

$$
(a e \bullet e) \circ(e b \bullet e) \circ(e \bullet c e) \circ(e \bullet e d)=(a e \bullet e) \circ(e c \bullet e) \circ(e \bullet b e) \circ(e \bullet e d) .
$$

Thus (Q, \bullet) must be medial.
Theorem 2a If (Q, \bullet) is a non-trivial idempotent medial quasigroup then for each $e \in Q$ there is a commutative group $\left(Q,+_{e}\right)\left(x y=x e+_{e} e y\right.$ for all $\left.x, y \in Q\right)$ such that R_{e}, L_{e} are commuting automorphisms of $\left(Q,+_{e}\right)$ and $x+e x=x$ for all $x \in Q$. Further, (Q, \bullet) is linear over $\left(Q,+_{e}\right)$ with dilatation L_{e}. Various choices of the element e lead to mutually isomorphic groups $\left(Q,+_{e}\right)$.

Proof Follows from Theorem 1a. If (Q, \bullet) is a non-trivial idempotent medial quasigroup then $x=x x=x e+e x$ and

$$
x y=x e+_{e} e y=x e+_{e} e x-{ }_{e} e x+_{e} e y=x+{ }_{e} L_{e}\left(y-_{e} x\right)
$$

for all $x, y \in Q$. As $L_{e} \neq \operatorname{id}_{Q},{ }^{2}(Q, \bullet)$ is linear over $\left(Q,+_{e}\right)$ with dilatation L_{e}. By Lemma $5, R_{e}$ and L_{e} are commuting automorphisms of ($Q,+_{e}$). The groups for various $e \in Q$ are isotopic as isotops of the same quasigroup (Q, \bullet), and isotopic groups are necessarily isomorphic as it is well known from the elements of the quasigroup theory.

Theorem 2b Let (Q, \bullet) be a groupoid linear over a commutative group $(Q,+)$ with a dilatation φ. Then (Q, \bullet) is a non-trivial idempotent medial quasigroup and $\varphi=L_{e}$ for some element $e \in Q$.

Proof The map $\psi=\operatorname{id}_{Q}-\varphi$ is an automorphism of $(Q,+)$ too, as

$$
\psi(x+y)=x+y-\varphi(x+y)=x-\varphi(x)+y-\varphi(y)=\psi(x)+\psi(y)
$$

for all $x, y \in Q$. Moreover,

$$
\psi \varphi(x)=\varphi(x)-\varphi(\varphi(x)), \quad \varphi \psi(x)=\varphi(x-\varphi(x))=\varphi(x)-\varphi^{2}(x)
$$

so that φ and ψ are commuting. All which remains is already the consequence of Theorem 1b $(\sigma=\psi, \tau=\varphi)$.

[^0]
2 We are prepared to find some specialization of Theorems 2a-b

Let (Q, \bullet) be a quasigroup. We shall investigate an identity of the form

$$
f(x, f(x, y, z), z)=y
$$

namely the identity $a(a b \bullet c) \bullet c=b$ so that $f(x, y, z)=x y \bullet z$ called the first golden section identity. It is equivalent with the identity $a \bullet(a \bullet b c) c=b$, the second golden section identity (cf. [3], p. 307). The golden section identity implies the mediality. Mediality and idempotency imply autodistributivities $(x \bullet y z=x y \bullet x z, x y \bullet z=x z \bullet y z)$ and elasticity $(x \bullet y x=x y \bullet x)$.

A quasigroup satisfying golden section identities and idempotency is called golden section quasigroup (according to V. Volenec, [3], p. 307).

Example 1a Let $(\mathbb{C},+, \bullet)$ be the field of all complex numbers and \square a binary operation on \mathbb{C} such that $a \square b=a+q(b-a)$ for all $a, b \in \mathbb{C}$, where

$$
q=\frac{1}{2}(1 \pm \sqrt{5}), \quad q^{2}=q+1
$$

Thus

$$
\frac{a \square b-a}{b-a}=q, \quad(q-1): 1=1: q, \quad \frac{a \square b-b}{b-a}=\frac{b-a}{a \square b-a} .
$$

Then (\mathbb{C}, \square) can be shown to be a golden section quasigroup. This example was a first inspiration for golden section quasigroups.

Example 2 Let $(F,+, \bullet)$ be a field, q an element of F satisfying the equation $q=q^{2}-1$ and \square a binary operation on F such that $a \square b=a+q(b-a)$ for all $a, b \in F$. Hence $x \mapsto q x$ is a non-identical additive automorphism of $(F,+)$ and (F, \square) is linear over $(F,+)$ with dilatation $F \rightarrow F, x \mapsto q x$. It can be shown that (F, \square) is a golden section quasigroup.

Theorem 3a Every quasigroup (Q, \bullet) linear over a commutative group $(Q,+)$ with a dilatation $\varphi=\varphi^{2}-\mathrm{id}_{Q}$ is a golden section quasigroup. (Cf. also [3], pp. 307-308.)

Proof By definition of the binary operation \bullet, we have

$$
x y=\left(\operatorname{id}_{Q}-\varphi\right)(x)+\varphi(y) \quad \text { for all } x, y \in Q,
$$

so that $(Q,+)$ is a principal isotop of (Q, \bullet). For all $a, b \in Q$ we obtain successively

$$
\begin{gathered}
a b=a+\varphi(b-a), \\
a b \bullet c=(a+\varphi(b-a))+\varphi(c-a-\varphi(b-a))= \\
=a+\varphi(b+c-2 a)-\varphi^{2}(b-a)=2 a-b+\varphi(c-a), \\
a(a b \bullet c) \bullet c=2 a-(2 a-b+\varphi(c-a))+\varphi(c-a)=b .
\end{gathered}
$$

Theorem 3b Every golden section quasigroup (Q, \bullet) is linear over a commutative group $(Q,+)$ with a dilatation $\varphi=\varphi^{2}-\mathrm{id}_{Q}$. (Cf. also [3], Theorem 19 on p. 317.)

Proof As (Q, \bullet) is idempotent and medial we can use Theorem 2a and express (Q, \bullet) as a linear quasigroup over a commutative group $(Q,+)$ with some dilatation $\varphi: a b=a+\varphi(b-a)$ for all $a, b \in Q$. We obtain succesively

$$
\begin{aligned}
& a b \bullet c=(a+\varphi(b-a))+\varphi(c-(a+\varphi(b-a)))=a+\varphi(b+c-2 a)-\varphi^{2}(b-a), \\
& \begin{array}{l}
a(a b \bullet c) \bullet c= \\
\quad=a+\varphi\left(a+\varphi(b+c-2 a)-\varphi^{2}(b-a)+c-a\right)-\varphi^{2}\left(a+\varphi(b+c-2 a)-\varphi^{2}(b-a)-a\right)= \\
\quad=a+\varphi(c-a)+\varphi^{2}(b+c-2 a)-\varphi^{3}(2 b+c-3 a)+\varphi^{4}(b-a), \\
a+\varphi(c-a)+\varphi^{2}(b+c-2 a)-\varphi^{3}(2 b+c-3 a)+\varphi^{4}(b-a)=b, \\
-(b-a)+\varphi(c-a)+\varphi^{2}((b-a)+(c-a))-\varphi^{3}(2(b-a)+(c-a))+\varphi^{4}(b-a)=0 .
\end{array}
\end{aligned}
$$

If we put $b-a=x, c-a=y$ we get

$$
-x+\varphi(y)+\varphi^{2}(x+y)-\varphi^{3}(2 x+y)+\varphi^{4}(x)=0 .
$$

For $x=0$ it follows that

$$
\varphi(y)+\varphi^{2}(y)-\varphi^{3}(y)=0 .
$$

Thus the substitution $\varphi(y)=z$ gives

$$
z+\varphi(z)-\varphi^{2}(z)=0, \quad \text { i.e. } \quad \varphi(z)=\varphi^{2}(z)-\operatorname{id}_{Q}(z)
$$

Since φ is a bijection, the preceding equality holds for every $z \in Q$ and we get $\varphi=\varphi^{2}-\mathrm{id}_{Q}$.
V. Volenec obtained Theorem 3 b without use of Toyoda's theorem as a final conclusion of his reasoning in the adjacent parallelogram space. But herein they occur some difficulties namely with the construction of the basic commutative group.

Now we utilize Theorems $3 \mathrm{a}-\mathrm{b}$ and express the condition $\varphi=\varphi^{2}-\mathrm{id}_{Q}$ in form of some identities over the quasigroup under consideration.

Theorem 4 Let (Q, \bullet) be a non-trivial idempotent medial quasigroup. It is a golden section quasigroup if and only if it satisfies the identity $y \bullet y x=(x / y) \bullet y$ or the identity $y \bullet y x=x \bullet((y \backslash x)(x / y))$.

Proof Using Theorem $2 \mathrm{~b}(Q, \bullet)$ can be expressed as a linear quasigroup over a commutative group $\left(Q,+_{e}\right)$ with the dilatation $\varphi=L_{e}$ for some $e \in Q .(Q, \bullet)$ is then a golden section quasigroup if and only if $\varphi=\varphi^{2}-_{e} \mathrm{id}_{Q}$ (Theorem 3a-b). Recall that $x y=x+e \varphi\left(y-{ }_{e} x\right)$ for all $x, y \in Q$. Thus $\varphi^{2}=\operatorname{id}_{Q}+{ }_{e} \varphi$ may be
written as $e \bullet e x=x+e e x$ and this is equal to $(x / e) \bullet e+_{e} e x=(x / e) \bullet x$ or, respectively, to

$$
x+{ }_{e} e \bullet\left(x+{ }_{e} x-{ }_{e} x\right)=x \bullet\left(x+{ }_{e} x\right)=x \bullet((e \backslash x)(x / e))
$$

This reasoning can be conversed. The element $e \in Q$ can be taken arbitrarily (as (Q, \bullet) is idempotent) so that we have obtained the identity $y \bullet y x=(x / y) \bullet x$ or, respectively the identity $y \bullet y x=x \bullet((y \backslash x)(x / y))$ as a necessary and sufficient condition for (Q, \bullet) to be a golden section quasigroup.

Our final remark concerns finite nearfields. If $(F,+, \bullet)$ is a finite nearfield and q its element such that $\varphi: F \rightarrow F, x \mapsto q x$ is non-identifical additive automorphism then we shall speak of a standard dilatation φ with slope q. Every groupoid (F, \circ) linear over the additive group of a finite nearfield $(F,+, \bullet)$, with a standard dilatation, is 2-homogeneous, i.e., the full automorphism group of (F, \bullet) operates strongly doubly transitively on F. Conversely, every finite 2 homogeneous quasigroup (Q, \circ) is linear over the additive group of some finite nearfield $(Q,+\bullet)$ with a standard dilatation. (For proofs, cf. [2], pp. 10931098.) It can be proved that every quasigroup linear over the additive group of some finite nearfield with a standard dilatation is medial if and only if this nearfield is associative (i.e., a field). Thus a golden section quasigroup is linear over the additive group of a finite field, with standard dilatation, if and only if it is 2 -homogeneus.

In $\mathrm{GF}(2), 1=q=q^{2}=q+1$ implies $q=0$ and similarly, in $\mathrm{GF}(3)$, $1=q^{2}=q+1$ implies $q=0$. On the other side, in GF(4),

$$
1=q^{3}=q^{2} \bullet q=(q+1) q=q^{2}+q=q+1+q \Longleftrightarrow q+q=0
$$

Thus no slope q exists for a standard dilatation over GF(2), GF(3) and GF(4). On the other side, in GF(5)

$$
\begin{aligned}
1= & q^{4}=q^{3} \bullet q=\left(q^{2} \bullet q\right) \bullet q=(q+1) q \bullet q= \\
& =\left(q^{2}+q\right) q=(q+q+1) \bullet q=q+1+q+1+q=(q+q+q)+1+1
\end{aligned}
$$

E.g. $q=1+1+1$ satisfies the equation $q+q+q+1=0$ and is a slope for a standard dilatation over GF(5).

References

[1] Toyoda, K.: On axioms of mean transformations and automorphic transformations of abelain groups. Tôhoku Math. Journ., 46 (1940), 239-251.
[2] Stein, S. K.: Homogeneous quasigroups. Pacif. Journ. Math., 14 (1964), 1092-1102.
[3] Volenec, V.: GS-quasigroups. Cas. pěst. mat., 115 (1990), 307-318.

Authors' address: Miroslava Sedlářová
Department of Algebra and Geometry
Faculty of Science
Palacký University
Tomkova 40, Hejčín
77900 Olomouc
Czech Republic

Václav Havel
Ústav matematiky FEI VUT
Technická 2
61669 Brno

[^0]: ${ }^{2}$ From $L_{e}=\operatorname{id}_{Q}$ it would follow that $e x=x x$ and consequently $e=x$ for all $x \in Q$ so that (Q, \bullet) would be trivial.

