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Abstract 

Some inequalities, related to Jensen's discrete inequality, are given for 
self-adjoint operators in Hilbert space. 
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Preliminaries 

Let X be a linear space and C a convex subset in X. If / : C —> 1R is convex 
on C, then the following inequality is well known in the literature as Jensen's 
discrete inequality: 

f ( P"-&«XÍ ) ^ t-Íu*f(**) 

where Xi are n-elements in C, pi > 0 for i = 1 , . . . , n and Pn = Yl^i Pi > 0. 



S. S. DRAGOMIR, B. MOND, J. E. PEČARIÓ 

For some refinements of this classical result as well as certain applications 
in the theory of inequalities connected with the arithmetic-geometric mean in­
equality, generalized triangle inequality, Ky Fan's and other inequalities, we 
refer to the recent papers [1-7] and [11-12]. 

Now, let (H; (, )) be a Hilbert space and A : H"•—• H a self-adjoint operator 
on H satisfying the inequality 

ml < A < MI, i.e. m\\x\\2 < (Ax, x) < M\\x\\2 for all x in H. 

To the real valued function g : [m, M] —* M, there is associated in a natural way 
a self-adjoint operator on H denoted by g(A) (see e.g. [13, pp. 265-273]). 

We shall make use of the following [13, p. 271]. 

Lemma 1 Suppose that g\,g^ ' [m,M] —• ffi are continuous and that 02(A) > 
#i(A) for all A E [m,M], then also g2(A) > gi(A). 

By the use of this lemma we shall give some analogues of Jensen's inequality 
for self-adjoint operators in Hilbert space. Some natural applications for convex 
functions are also given. 

Results 

First we shall note that the following result is a simple consequence of Lemma 
1 and the definition of convex functions. 

Theorem 1 Let f : [a,b] C 1R —* K be a continuous convex function, x,y € 
[a, b] and A a self-adjoint operator in Hilbert space H with 0 < A < I. Then 

f(xA + y(I-A))<Af(x) + (I-A)f(y) 

in the order ofA(H), (A(H) denotes the linear sub space of self-adjoint operators 
onH). 

Theorem 2 Suppose that / : [ o , t ] C l - ^ l is continuous convex on [a,b], 
Pi > 0, Xi G [a,b] (i = l , . . . , n ) with Pn > 0. and A is a self-adjoint operator 
on a Hilbert space H with 0 < A < I. Then 

/ ( ^ | > * < ) I < ] r ^ 

<(^Ep^. )J I (i) 

in the order of A(H). 
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Proof Consider the mappings <li,#2>03 : [0> 1] —• M given by 

( 1 n \ 1 n 1 n 

•w-YsPiXi)> flf2(0=p-]Cp«/ txi + (l-l)-£-Ylv3xi 
^n i=i / rn t=i r " i = i 

and 

<lз 
^ n г=l 

Since / is continuous convex on [a, 6], #2 is also convex and continuous on 
[0,1]. The mapping g\ is continuous on [0,1] (being constant on [0,1]) and by 
Jensen's inequality one has 

for all* G [0,1]. 
Using Lemma 1 for #2 and g\ defined above, we get the first inequality in (1). 
To prove the second inequality, we observe that 

»(*) £ * 4-!>/(*.•)+(1-0/ [ 4-f>*« I < »(o 
^n .=1 v r n =̂1 / 

for all t G [0,1]. Applying Lemma 1 for #2 and #3 we deduce the desired result. 

Corollary 1.1 Suppose that Xi > 0, Pi > 0 with Pn > 0 (»•== l , . . . , n ) and 
p > 1. Then /or a self-adjoint operator A on Hilbert space H with 0 < A < I, 
we have 

ѓ = l 
Eл*0 I-^p«"1£M*<л+hг.&а:i VI-^)} < 

ť = l p„ І = l 

<-ГҶІ>«f)J 

V.» = l 

m tfhe orrfer of A(H). 

Corollary 1.2 Suppose that X{ > 0, p« > 0 with Pn > 0 (i == 1,. . , ,n) ana1 A 
25 as above. Then one has the inequality: 

n > V l / P n n 

IK , s п 
ť = l / 1 î = l 

CiЛ+ IjrÈ^VI-^) 
l/p„ 

žтZ»"Р Рn ť = l 

гn tòe orrfer of A(H). 
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Proof By a similar argument as in Theorem 2 for the convex mapping f(x) = 
— In x (x > 0) we get the following refinement of the arithmetic-geometric mean 
inequality: 

\ i !p» 

1>Г < 
i = l / 

n i n 

ПÞz. + a-OirEpiЯiГ 
i = l 

Pn 
j = l 

1/Pn 

1 ^ - л 

Pn ť = ł 

for all Xi > 0, pi > 0 (i = 1,..., n) with Pn > 0 and * G [0,1]. Now, applying 
Lemma 1, we get the desired inequality. 

T h e o r e m 3 Let f,Xi,pi (i = 1,. . . ,n), A be as in Theorem 2. Thus, one has 
the inequalities 

( 4 E MJ/ (^r5-) I J ̂  E w/M + M'--*)! < V^" <,i=i \ - /y p«ij=i 

tn tfhe orrfer of A(H). 

Proof We consider the mappings #i,#2>#3 • [0,1] —̂  M given by 

1 n / 

n ij=i v 

(2) 

91 

and 

Xi -f Xj 1 
02(0 = p2 ]C PiPif(ÍXi + C1 ~ 0*j) 

« f,j = l 

1 " 

îsO-p-Eft/w-Pn 
i-X 

Now, let us observe that g%(i = 1,2,3) are continuous on [0,1] (note that #2 
is also convex on [0,1]). By the convexity of / one has 

\\f{tXi + (1 - 0«i) + /((l - t)Xi + tXj)} > / ( ^ i 

for all t £ [0,1] and i , j € { l , . . . , n } . By multiplying this inequality with 
PiPi > 0 a n d summing over i and j from 1 to n, we deduce that 

i 
2P2 X] PiPif(ixi + í1 - *)*j) + 5Z PiPjfd1 - f)Xi + ťíCj) 

[«J=1 i,Í = l 

1 A -*£«>'(-*-•) 
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and since 
n n 

Yl PiPjf(txi + U ~ *)*J) = ]C PiPifii1 ~ *)*« + txj) 
i.j = l i,j = l 

we get g2(t) > gx(t) for all t g [0,1]. 
Now, applying Lemma 1 for gi and #2 we deduce the first inequality in (2). 
For the second part of (2), we have, by the convexity of /, that 

,. n - n 

92(0 < *p- 51 PiPif(xi) + (1~Op" 51 PiPif(xi) = »(*) p2 Z 
n ť j = l P„ ť,І=l 

for all 2 E [0,1]. By Lemma 1, applied to g2 and #3, we get the desired result. 

Remark 1 Jensen's inequality for double sums gives that 

which shows that inequality (2) is also an improvement of Jensen's inequality. 

Corollary 2.1 Suppose that Xi > 0, pi > 0 (i = 1,. . . , n) tvî h Pn > 0 ana7 

p > 1. TAen, /or a/1 A as above, we have 

( E ftft ( f L r s " ) J7 -.?PiPi[scM+Xj(J" A)]p - Pn (x>^) r-
Corollary 2.2 Lef #?- > 0, p< > 0 (t = 1, . . . , n) njifa Pn > 0 and A. as above. 
Then 

i/pi 

n ( ^ ) p , P i I< f n M + ^ - A r < (££»*)I-

Another result connected with Jensen's inequality is embodied in the next 
theorem. 

Theorem 4 Let f : [a,6] —+ E 6e continuous convex on [a,6], â - E [a,6] and 
P« > 0 0 = 1> • • • >n) wrth Pn > 0 and A as above. Then 

-5- 5Z PІPІUXІA+жi(I - Л)Ì > І 
ľ n І,І=I 

in the order of A(H). 

Êю/U.л+(£ÊРj*i)(/-л)| 
«=i L n j = i J 

EPi/U(i-л) + (^èft*i)л] 
(»=i i n

 І = I
 J 

(3) 



12 S. S. DRAGOMIR, B. MOND, J. E. PEČARIC 

Proof It is sufficient to prove the first inequality in (3). We have, by Jensen's 
inequality, that 

*-(0 = p- J2 PiPjf(txi+(i - ť)*i) = 
-n «'J=1 

=2> ^-EP i/(^+(i-^i) >i)w/|^Spi(te< + (i-o«i)|= 
r ni=i J *=i V i=i / 

n / 1 n \ 

=£p.-/i^+(i-o^z;pi*ij =̂ w 
for alU G [0,1]. 

Since the above mappings g\ and #2 are continuous convex on [0,1] and 
92(t) > 9i(t) for all t E [0,1], hence by Lemma 1, we get ^(-4) > gi(A). This 
completes the proof. 

Corollary 3.1 Suppose that X{ > 0, pi > 0 i = 1 , . . . ,n) tu^h P n > 0 ana7 

p > 1. Then for all A as above one has: 

{pn E Pi [«.i-+(it E w *<) (I - -*)]P 

X>P i (* .^ + -v(I-A)Y>4 'n1
 r '"* » IP 

••i=l Pn E Pi \*i(I -A)+(±E Pj*j)A • 
K , = i L n i = i J 

Corollary 3.2 If X( > 0 and p,- > 0 (t = 1 , . . . , n) ana" 4̂ as above. Then 

-ll/Pn 

П ( ^ - 4 + ^ І ( / - - 4 ) ) ^ 
»,i=i 

ńíMт^E^Kí-i)]^ 
ѓ=l L л i = l J 

| п k ( I - ^ ) + (^ĚРi^И Р І -
Ü = 1 L i = l J 

For other inequalities for self-adjoint operators in Hilbert space, see [8-9] 
and [10] where further references are given. 
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