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Abstract 

The aim of this paper is to show a connection between indexed anni
hilators and ideals in distributive and modular ordered sets. 
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M. Mandelker [6] introduced the concept of annihilator in a lattice. He 
proved that a lattice L is distributive if and only if every its annihilator is an 
ideal of L. Annihilators in lattices were intensively studied by B. Davey and 
J. Nieminen, see [2], [3]. Recently this concept has been generalized also for 
ordered sets, see [4]. Let us recall some basic concepts. 

ket (S, <) be an ordered set and X be a subset of S. Denote by 

L(X) = {y e S] y < x for each x e X] 

U(X) = {yeS; x< y for each x• € X}. 

If X = {a,b} or X = A U B or X = A U {&}, we will write briefly L(a, b) or 
L(AyB) oi L(Ay 6), respectively and, analogously, U(ayb) or U(AyB) or U(Ayb^). 
We will also use the notation UL(X) instead of U(L(X)) and LU(X) instead 
of L(U(X)}. 

:И 
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An ordered set (S,<) is called distributive (modular) (see [5], [7]) if 

L(U(a,b),c) = LU(L(a,c),L(b,c)) 

(a<c=> L(U(a, b), c) = LU(a, L(b, c))) 

holds for each a,b,c E S. 
For an ordered set S let NQ(S) denotes asublattice of the Dedekind-MacNeill 

hull N(S) of S generated by the set {L(x);x E 5'}. 
The following lemma describes distributivity of NQ(S) (see [4]): 

L e m m a 1 Let S be an ordered set. Then NQ(S) is distributive iff the following 
condition holds: 

for every j , m,x E S, if L(j, x) C L(m), U(m, x) C U(j), then j < m. 

Using Lemma 1 we obtain the following useful characterizations of distribu
tive ordered sets: 

Theorem 1 For an ordered set S the following conditions are equivalent: 

(1) S is distributive 

(2) NQ(S) is distributive 

(3) V n E N Va?,a?i,.!.,a:„ E S: 

L(x, U(zi,..., xn)) = LU(L(x, zi),..., L(z, xn)) 

(4) \/x,y,z£S: U(L(x, y),z) = UL(U(x, z),U(y, z)) 

(5) \fa,b,ceS: L(U(a,b),c) C LU(a, L(b,c)). 

Proof (1) => (2) Let j , m,x E S be such that L(j, x) C L(m), U(m, x) C U(j). 
Then we have 

L(j) = L(j) H LU(m, x) = L(j, U(m, x)) = 

= LC/(L(i, m), L(i, a:)) C LU(L(j, m), m) = L(m), 

so j <m. By Lemma 1, No(S') is distributive. 
(2) => (3) Evidently, L(x), L(xx),..., L(xn) E NQ(S). The join of elements 

L(xx),..., F(a?n) in NQ(S) is equal to 

L(xi) V . . .VL( t f n ) = L<7(%),...,L(^n)) = LC1(ari,...,arn). 

Using distributivity of No(S) we get 

L(x, U(xu . . . , a?„)) = i(a?) n LI7(a?i, . - . , *» ) = L(x) n ( I (x i ) V . . . V L(ar„)) = 

= L(ar,ari) V . . - V i f a i , ^ ) = LU (L(x, xx),..., L(x,xn)). 
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(2) => (4) Condition (4) is equivalent to 

L(U(x,z),U(y,z)) = LU(L(x,y),z). 

Using distributivity of N0(S) we obtain 

L(U(x, z), U(y, z)) = LU(x, z) n LU(y, z) = (L(x) V L(z)) n (L(y) V L(z)) = 

= L(z) V (L(x) n L(y)) = L(z) V L(x,y) = LU(L(x,y),z). 

(2) => (5) The following equalities hold in NQ(S): 

L(U(a, b),c) = LU(a,b) n L(c) = (L(a) V 1(6)) n L(c) = L(a, c) V L(b, c) = 

= LU(L(a, c), L(b, c)) C LU(L(a), L(b, c)) = LU(a, L(b, c)). 

(3) => (1) We put n = 2 in (3). 
(5) => (2) Let L(j,x) C I ( m ) , U(m,a;) C U(i) then 

i ( i ) n i ^ ( m , * ) = E(j) = 

= L(j, U(m, x)) C EU(m, L(j, *)) C £U(m, L(m)) = L(m), 

so j < m and, therefore, ./Vo(S') is distributive. 
(2) => (1) The following equalities are valid in No(S): 

L(U(a,b),c) = LU(a, b) n L(c) = (L(a) V L(b)) n 1(c) = 

= I ( a , c) V L(b, c) = LU(L(a, c), L(b, c)) 

(4) => (2) Let L(j,x) C I ( m ) , U(m,a;) C U(j). Then 

CA(I(i,*),"») = U(m) = UI(C/(i,m),U(a;,m)) C UL(U(j,m),U(j)) = U(j), 

so U(m) C U(j) and j < m. • 

Definition 1 (see [5]) Let (5, <) be an ordered set. A subset I C S is called an 
ideal of S if #, H £ I imply LU(x, y) C I. An ideal I of (5, <) is called strong (or 
s-ideal) if for every non-void finite subset F C I also LU(F) C I. Let a,b e S. 
By principal annihilator (a,b) is meant the set 

( a , , ) - - { ^ S ; UF(a,z)DU(b)}. 

Let us note that the set Id(S') of all ideals of 5 forms an algebraic lattice 
with respect to set inclusion. 

Let us recall definitions used in [5]: 

Definition 2 Let S be an ordered set, A C 5, B C S. A double generalized 
annihilator (d-annihilator) in S is the set defined by: 

(A,B) = {xeS; UL(A,x) D U(B)}, 

and, dually, a double generalized dual annihilator (dual d-annihilator) in S is: 

(A, B)d = {xeS; LU(A, x) D L(B)}. 

If A is a one element set, then the (dual) d-annihilator is called the (dual) 
annihilator. 
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In [5] it has been shown that the set S is distributive iff every annihilator in 
S is an ideal. Moreover, in [1] the following lemma was proven: 

Lemma 2 Let S be an ordered set, a e S, B C S. IfU(B) = 0 then (a, B) = S, 

tfU(B)^H), then 
(a,B) = n{(a,b1);b1 eU(B)}. 

Using Lemma 2 and results mentioned above we can prove 

Theorem 2 The set S is distributive iff every principal annihilator in S is an 
ideal. 

Proof It suffices only to show that if every principal annihilator is an ideal 
then every annihilator is an ideal. For every a G S, B C S we have by Lemma 2 
(a,B) = S or (a,B) = n{(a,b7) ;b7 G U(B)}. In the first case (a, B) is an ideal, 
in the second one, (a, B) is the intersection of ideals, so it is an ideal again. • 

Similarly as distributivity also modularity of a given set can be characterized 
by the following annihilator condition: 

Theorem 3 The set S is modular iff the following condition (M) holds: 

ifx,aeS, B C S with B C L(a), U(x) D U(B) and y G (a, B), then 

ae(U(x,y),B). 

Proof (i) Let S be modular and let a,x,B satisfy assumptions of condition (M). 
Then y G (a,B) implies UL(a,y) D U(B). Further, a G U(B) gives a G U(x). 
Due to modularity we have 

L(a, U(x, y)) = LU(x, L(a, y)) = L(U(x) D UL(a, y)) C LU(B), 

i.e. UL(a,U(x,y)) D ULU(B) = U(B), henceforth a G (U(x,y),B). 

(ii) Conversely, let S satisfies condition (M) and let x,z G S, x < z. Then 
UL(y,z) D U(x,L(y,z)), so y G (z,{x} U L(y,z)). Further, for every b G {#} u 

L(y,z) it holds b < z and, moreover, U(x) D U(x,L(y,z)). Due to condition 
(M) we obta ins G (U(x,y), {x}UL(y, z)), hence UL(z, U(x, y)) D U(x,L(y^))i 
i.e. L(z,U(x,y)) C LU(x, L(y, z)). Since the converse inclusion is true, S is 
modular. n 

Example 1 The set S depicted in Fig. 1 is not modular. If we put B ^ {&}, 
x = b, y = a in the condition (M), then B C L(c), U(x) D U(b) = {b,c}, 
a e (c,b) = {a,b}, but c ^ (U(x,a),b) = {b}. 

Fig. 1 
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Let us note that if (5, <) is a lattice, the concepts of ideal and strong ideal 
coincide with the lattice ideal and the concept of annihilate coincides with that 
of [6] or [2], [3]. 

As it was shown in [1], annihilators are important tools for some investiga
tions of ordered sets. Unfortunately, there is an essential difference with the set 
of all ideals of an ordered set, namely the set of all annihilators of S does not 
form a lattice in a general case: 

Example 2 Let S = {a, 6, c,J, 1} and the ordered set (5, <) has the diagram 
as shown in Fig. 2. 

Then we have 
(a,c) = {6,c, d} and (6,c) = {a,c, d} 

but for none x,y G S we have 

(x,y) = {c,d} = (a ,c )n(6 ,c ) . 

To avoid this disadvantage, we can introduce the following new concept (see 

[1]): 

Definition 3 Let (5, <) be an ordered set and a7 ,67 £ S for 7 G T ^ 0. 
By an indexed annihilator determined by a7 ,67 (7 G T) is meant the set 
{zeS; UL(z}ay)DU(by)t 7 G T}. 

Remark 1 The set IA(S) of all indexed annihilators of (5, <) forms a complete 
lattice with respect to set inclusion. The greatest element of IA(S) is equal to 
S and the operation meet coincides with set intersection. 

We are able to give an explicite construction of the indexed annihilator &f(X) 
generated by the set X (see [1]): 

C o n s t r u c t i o n ! Let X C S. For each a G S denote by Ba = {6 7 a ;7 a £ Ta} 
the so called polar of a, i.e. the set of all elements 67a G S satisfying the condition 
UL(a,x) D U(bja) for each x G X (Ba / 0 since a G Ba). Put 

Aa = n{(a ,6 7 a ) ; 7a G Va}. 

Then 
< K ) = n{Aa; aeS}. 
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Example 3 Let the diagram of (5, <) be given in Fig. 3. 

1 

X 

Fig. з 

F o r X = {x ,y} we have the polars 

5 i = {1,?, z} = Bq = вz 

Br = {l,г, q,p,z,x} = : Bp = = J?r = 

By = {1,3, z,y}-

Hence 

Ai = (1,1) 1-1(1, ?>n( i ,-> = SП{q,p ,S,г/, ,}n{ 

д.= = {x,y,z} — Aq — Az = л y 
= Ap 

Bx 

Ax 

thus J2/(K) = {x,y,z}. 
Hence, it is a natural problem if every ideal of an ordered set S is an indexed 

annihilator at least in the case of distributive (£, <). 
Especially, if (5, <) is a finite distributive lattice then Id(5) = IA(S) since 

every ideal J of S is a principal ideal, i.e. J = L(x) for some x G S and 
L(x) = (1,#), where 1 is the greatest element of S. We are proceed to show 
that the answer to our problem is negative (in infinite case). 

Example 4 Let M be an infinite set. Consider the set A = E x p M of all 
subsets of M ordered by set inclusion (trivially, (Exp M, C) is a distributive 
lattice). The set J of all finite subsets of A forms an ideal of (A, C). By using 
of the Construction of &/(X), we obtain 

tf(J) = A^J. 

Hence J is not an indexed annihilator of A. 

This motivates our investigation for which ideal J of (5, <) we have &/(J) = J. 

Proposition 1 Let (5, <) be a finite ordered set. Then &/(J) = J for every 
strong ideal J of (5, <) (see [1]). 

Let us show that converse is also true, i.e. it holds 

T h e o r e m 4 Let S be a finite distributive set. If J is an ideal for which 
gf(J) = J. then J is an s-ideal. 
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P roo f We put 

J = {kit G I}, Ba = {b7a G 5; F(a,f;) C L(67a) for every i; E J} 

by the Construction. From this we have 

U{L(aJi); i£l}CL(bia). 

Using LU operator to this inclusion we obtain 

LU(U{L(aJi); i G /}) C LUL(bia) = L(bja). 

Since S is distributive, it holds 

LU(U{L(aJi); i G I}) = L(a,U(J)). 

Now, let z G LU(J) be an arbitrary element. If we prove that z G ^ ( J ) = J, 
then IJU(J) — J and so J is an s-ideal. 

If z e LU(J), then L(z) C LU(J) and therefore 

L(a,^)CL(a,L7(J))CL(b7a) 

for every a £ S, b7a E Ba. By the Construction it means that 2 G £?(J). D 
As consequence of Proposition and Theorem 4 we get 

Corollary 1 Let S be finite distributive set. Then for ideal J G Id(5) srf(J)=J 
holds iff J is an s-ideal. 
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