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Abstract 
It was shown in [2] that the inertial law of quadratic forms can be 

suitably generalized when the vector space is replaced by a free finite-
dimensional module over certain linear algebra on JR (real plural algebra) 
introduced in [1]. In the present paper an analogy of the Sylvester theorem 
is founded. 
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1 Preface 
Definition 1.1 The real plural algebra of order m is every linear algebra A on 
M having as a vector space over ]R a basis 

{ l . T ^ 2 . . . . , * , — * } , W l t h ^ - 0 . 

Definition 1.2 The system of projections A ~> 1 is a system of mappings 
Pk : A onto M, defined for k = 0 , . . . , m — 1 as follows: 

m—1 

V/?€A > = ] T > y ; Pk(P) = bk. 
i=0 

* Suppor ted by grant No. 201/95/1631 of The Grand Agency of Czech Republic. 
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Now we present a survey of several results from [1] and [2] which we will 
need in Part II. 

Proposit ion 1.3 A is a local ring with the maximal ideal rjA. The ideals rf A, 
1 < j < m, are all ideals of A. 

Notat ion 1.4 In the sequel we will always denote by A the M-algebra from 
Definition 1.1 and by M the free finite-dimensional module over the algebra A. 

Proposit ion 1.5 Let® : M 2 —> A be a bilinear form. Then there exists exactly 
one system of bilinear forms 4>o,..., ^ m - i • M into M. such that 

m—1 

* = YJ *JV 
3=0 

Definit ion 1.6 The bilinear forms <£0,.. ., $ m - i • M 2 —> K from Proposition 
1.5 will be called projections of $ ($j is the j-th projection). 

Proposit ion 1.7 If<I>o, • - . $ m - i : M 2 ~* -R are bilinear forms then the map
ping 

rn—l 

j=Q 

is a bilinear form M 2 -> A if and only if VX, Y £ M : 

(i) MvK,Y) = o, 

(2) *ft(i/X30 = **-i(2C,23, l < * < m - l , 

(3) *o(2C>>?Y) = 0, 

(4) **(2Li7.tD = **-i(_L3_). l < * < m - l . 

Definition 1.8 A polar basis {U_x,..., U_n } of M with respect to given quadrat
ic form 2$ is called the normal polar basis if for every i, 1 < i < n, there exists 
&, 0 < <fc < ra, such that 

-#(£,.) =-V . 

Theorem 1.9 Fe£ a quadratic form 2$ On £be A-module M be given. Then 
there exists a normal polar basis of M with respect to 2$-

Definition 1.10 Let 2$ be a quadratic form on M and let U == {Ui, • • • >jf2n} 
be its normal polar basis. Putting 7; = j j f ^ ) , 1 < i < n, define a system 
of sets Ife = { 1 < i < n; 7t = T ^ } , 0 < A: < m and denote Tr* = card(2/c), 
0 < fc < m. 

Then <£rj(2$,£/) = (TTQ) . . . , 7rm) is called the characteristic of the quadratic 
form 2 $• w-tf/i respect to U. 
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Theorem 1.11 Let a quadratic form 2$ on M be given. If U,V are arbitrary 
normal polar bases of the form 2$, then 

C J ( 2 * , W ) = C ! J ( 2 « , V ) . 

Defini t ion 1.12 Let 2$ be a quadratic form on M and let U — {U l 5 . . . , U_n} 
be its normal polar basis. Putting 7,- = 2®{ILi)i 1 < -• < n> define a system of 
sets Pk = {1 < i < n; 7; = TJ^}, N* = {1 < i < n; 7; = —?j*}, 0 < k < m — 1, 
and denote p^. = cardPk> n^ = cardNk} 0 < k < m— 1. 

Then 6 ( 2 $ , ZV) = ( p 0 , . . . , p m _ i , T i o , . . . , % _ ! ) is called the plural signature 
of the quadratic form 2 $ with respect to U. 

Theorem 1.13 Let a quadratic form 2$ on M be given. If U,V are arbitrary 
normal polar bases of the form 2$ then 6 ( 2 $ , U) = 6 ( 2 $ , V). 

2 Sylvester theorem for free modules over plural 
algebras 

N o t a t i o n 2.1 With respect to Theorem 1.11 and Theorem 1.13 the charar-
acteristic, respectively the plural signature of the quadratic form 2$ will be 
denoted only by <£f)(2$) resp. by 6 (2$) . 

Lemma 2.2 Let B be a basis of an A-module M. Then B forms a basis mod 
77M Of M/77M as a vector space over 1 . 

P r o o f 77A is the maximal ideal of A (Proposition 1.3). M/77M is obviously a 
real vector space. Let B = {F l 3 . . . ,En}. 

(1) We prove that B is a set of generators of M/77M mod 77M. 

Let l G M , X = zCr=i &M-J} where £; = ]T)j=o ^ijif, 1 < * < n. Then 

n / n m—l \ 

1=1 \ »= i i = i / 

the second summand belonging to 77M. , 
(2) Now we prove the linear independence of B mod 77M over EL 
Let there exist c i , . . . , cn EM such that Y^=i c«JS?t- G 77M. Then 

n n 

»=i »=i 

and consequently rjm~1Ci = 0 for any 1 = 1 , . . . , n so that c i , . . . , cn = 0. 

N o t a t i o n 2.3 In what follows we will denote by M the real vector space M/77M 
and the coset represented by I G M we will denote by [X]. 
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Lemma 2.4 Let $ be a bilinear form M x M —> A and 3>0 its O-th projection. 
Then the mapping ^ i M x i - ^ l , ([K], [Y\) -> $o(2L ¥-) ™ well-defined and 
is a bilinear form M x M - f l . 

Proof We will verify the correctness of the definition of 3P. Let [K] = [2L ], so 
that there is a Z_ £ M such that X-X! = nZ_. Then &([X]t [Y])-&([X!], [Y]) ^ 
$ o ( I , I ) - $o(K ' , Y) = $ 0 ( K - K',Y) = $o(r?£, Y) = 0 [due to Proposition 
1.7] for every Y e M . 

Analogously, if [Y] = [Y'] then /^([K], [Y]) = ^ ( [ K ] , [Y']). So the definition 
of J^is correct. Since <E>0 is a bilinear form, z ^ i s a bilinear form as well. 

Lemma 2.5 Let a quadratic form $ on M and simultaneously a basis B = 
{2£i> • • • > I£n} ° / M 6e given. Let F = (0,j) 6e £ne matrix of 2$ with respect to 
B. Then F* = (po(<l>ij)) is the matrix of the quadratic form 2 ^ : M —> M1 with 
respect to the basis B* = {[F.J, •. -, [En]} O/M. 

Proof Putting fijs = ps(4>ij), 1 < z\ j < n, for s = 0 , . . . , rn — 1, we obtain 

for every [K] G M: Let X = £ ? = 1 6 & a n d '6 = ?2?=o *irf > 1 < « < n 

«2a = E?=si^o[&]). Then 

2J^([K]) = ^ ( [ K ] , [23) = *o(2L,20 = Po(*(2L20) N e Proposition 1.5.] = 

I n n \ / m — 1 n n \ 
J S + . + Ä 

\i=l j = l 1 fe+/+s=0 ѓ=l i = l 

n n n n 
_ V V ^ f _V^~~^... t± _.\ , . . . 
~~ / J / J -nju-^u^ju — / 4 / JPv\Yijj'LiO'*'jo • 

i=i j = i t = i j=i 

Theorem 2.6 Let 2<I> be a quadratic form on M ana1 F = (<£»j) an arbitrary 
matrix of 2$. Then the plural signature S(2<I>) is equal to (n, 0 , . . . , 0) if and 
only if 

hi • • • 9ik 
> 0 for all k, I <k < n. 

Pki • • • <£fcfc 

Proof Clearly, p0 is a homomorphism of M-algebra A into E and therefore 

Po(Ф 11 Po(Ф ìk) 

Po(<l>ki) • • • Po(4>kk) 

Now we must show (with respect to Lemma 2.5) that the form 2 ^ i s positive 
definite just if 6 (2$) = (^ ,0 , . . . ,0) . Let {E_i, • • ^Kn)

 D e a normal polar basis 
of $ . Then2 

2&WI = *o(2C,2Q = Y, Xi3xik ~ YL Xi*Xik
 ^YJX^"Y X™> (*) 

o<h<o,i^Ph 0<h<o,ieNh
 c ° C ° 

1 Determined by the bilinear form &. 
2This expression of $0 is derived in the proof of HI.7 in [2], 
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for every X = £ ? = 1 & £ , with ft = J ^ 1 * i i 7 * , 1 < • < n ([£] = ^ L i *<o[&])-
(1) L e t 6 ( 2 $ ) = ( n , 0 , . . . , 0 ) , i . e . P O f i = { l , . . . , n } , No=I1 = . . . = J m = 0 . 

Then we get from (*): 2^([2CI) = ZDiLi xiV Thus the form 2 ^ is positive 
definite. 

(2) Let 2 ^ be positive definite. Then N0 = 0 [from (*)]. Let us prove that 
Pb = {1, • • •, n}: Let there exist an m, 1 < m < n; m £ PQ. Then 2&{[Mm\) = 0 
[by (*)]. a contradiction, since the form 2 ^ is positive definite. Therefore Fo = 
{ 1 , . . . . n} and consequently Xi = . . . = Xm = 0. Thus 6 ( 2 # ) = (rc, 0 , . . . , 0). 
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