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Abstract

Two measurement devices are characterized by dispersions o? and o2
of their registration. The ratio o7 /03 is a priori unknown and approxi-
mations af,o and a§_0 are at our disposal only.

The relation between errorless registrations of these devices is given
by the calibration curve.

One of the procedures of constructing this curve is described in the
paper. Further, accuracy characteristics of the calibration curve parame-
ters estimators and the MINQUE 4% and 6% of the dispersions o? and o2
are given.

Key words: BLUE, MINQUE, model with constraints.
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Introduction

The aim of the paper is to find explicite formulae for estimators of parameters
B1 and (2, which link registrations of two measurement devices and estimators
of the dispersions o7 and 02 of their registrations.
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118 Lubomir KUBACEK, Ludmila KUBACKOVA

If an errorless registration of some value v of the first device is p, then the
errorless registration of the other device is v and

v=_p0 4 Bap

(calibration curve).

The registration p of the first device is realized with an error characterized
by the dispersion o2, the registration v of the other device is realized with an
error characterized by the dispersion o3.

1 Preliminaries

Let n (n > 2) different values vs, . . ., vy, of the measured quantity be registrated
by both devices. The results from the first device creates a realization of the
n-dimensional random vector (observation vector) Yi; an analogous meaning
has Y5 for the other device.

In our case we have the model

(%) ~[()-(%" &) a

p= (p1,...,pn), ¥ = (11,...,vn) and I denotes the n x n identity matrix
(the notation 17 ~ (a, W) means that the random vector n has the mean value
equal to a and its covariance matrix is W). Further

v =101 + pfs (1.2)
must hold (here 1 = (1,...,1) € R™ and R" denotes the n-dimensional Eu-
clidean space).

Lemma 1.1 Consider the model of incomplete direct measurements with a con-
dition Y ~ (71, %), '

(71) 6{(11) :b+B1u+B2v=0};
T2 v

here v, is an unknown n-dimensional parameter, 7y, an unknown k-dimensional
parameter, ¥ a given n X n p.d.matriz, By a given ¢ X n matriz and By is a
given q X k matriz; the ranks of the matrices By and Ba are characterized by
the relations

T(Bl,Bz) =q, T(BQ) =k k<qg<n+ k.

Then the BLUE (best linear unbiased estimator) of v, and vz s

:YI _ I - EBSQ],]Bl . '—EB,IQI,I ) 1.3
('3'2) - ( -Q2,B; )Y + ( -Q2,; b, (1.3)

and the covariance matriz of this estimator is

Var ‘?1 _ [ 2-XIBiQ.B:X%, -¥BiQi, >’
Y2 -Q2,:B:%, —Qs5
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where

(Ql,x, Q1,2) _ (BlzB'l, B\’ (1.4)
Q2,17 Q2,2 5‘27 0 ’ ’

Proof cf. in [2], pp. 138-143.

Remark 1.2 If in Lemma 1.1 £ = 02V, where V is a given n x n p.d. matrix
and o2 € (0, 00) is an unknown parameter, then

(’3’1 ) _ (I”V~B'1QI,IB1 )Y—l— ( -VP:'1Q1,1 ) b,

Y2 -Q2,1B; -Q2,
o) 2 V—=VB{Q:B:V, -VB/Qi )
Var | . =0 - ’ - ’ ,
> ( 2) ( -Q2,:B:V, -Qs2
where ~ 3 .
(91,1, 91,2) _ <31VB'1, B2) _
Qz21, Q22 2, 0

In this case the parameter o2 can be estimated by the statistic
62 = (Y -4)' V(Y =41)/(a— k).
In the case of normality of the vector Y, the distribution of the statistic 52 is

6% ~a?x2_1(0)/(q - k),

where xg_ +(0) is the random variable with the central chi-square distribution
and q — k degrees of freedom (in more detail cf. [2]).

The notation P¥ (used in the following) means an orthogonal projection
matrix A(A’'WA)~!A’W on the subspace M(A, ) = {Au, u € RF} in the
norm given by the p.d. n X n matrix W, ie. |lyllw = VY Wy, y € R™
Futhermore MY} = I - PYW. If W = I, then ‘ustead of P4 and M/ the
notation P4 and M4, respectively, is used.

2 Estimators of u,v, 3, and (3
Let pgy and B, o be approximate values of u and [, respectively, such that the

vector (i — pg)(B2 — P2,0) can be neglected. Then the relation (1.2) can be
substituted by

Baotte + (BroL, ~T) (‘i’,‘) (1, o) ( & ) o,

where dpp = p — g and 66 = B2 — fao-
In order to obtain a little more general solution of our problem, let 021 be
substituted by an n x n p.d. matrix ¥ ; and a%I by the n xn p.d. matrix 3 5.
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Under this assumptions, with respect to Lemma 1.1. our model can be
rewritten under the following scheme

Yi—po op B
Y - ( Y2 ’ 71 - v ) '72 - 5/32 3
b = Baope, Bi— (B20L -I), B2 — (1,1), (2.1)
11, 0
¥ - ( 0, T, ) .
Lemma 2.1 Let W be an n x n p.d. matriz and A an n X k matriz with the
rank r(A) = k. Then the matriz

W, A
A0
is regular and its inverse is
w, A\ '
A, 0 -
(WL -WIAA'WA)TTA'W-L, WIA(A'W-1A)-!
- (A'WTA)TA'WL, —(A'W~1A)! ’

Proof is obvious.

The matrix W™ —= W™ A(A'W-1A)~"!A'W~! can be written in the form
(M4WM,4)* (t denotes the Moore-Penrose g-inverse; in more detail cf. [3]).
Theorem 2.2 In the model (cf. (2.1))

Y1 —u ~ o Y11, O
Y2 v )’ 0, X /|’
)
/82,0”‘0 + (162,013 _I) ( 5) + (1’ ”‘0) (é‘ﬁﬂl? ) = 0,

if we denote My 4o =1 — Py ,,, where

L p )_l ( v )
P, = (1, ’ 0
1,p0 ( »U‘O) ( l’ﬂov ll'é)ll' ”’6

the following is valid

Qi1 = [Mio(830Z1,1 + B2,2)Mi )7,
_ (850211 + X22) 7" )
Q2,1 = Q2,2 (”6(/33,021,1 +22’2)~1 )

Qs = — ( V(B3 0Z1,1 +22)711, V(83,811 + Ba2) o )“1
2.2 uﬁ(ﬂ%,ozl,l +X22)71, po(B3 011 + a,2) 1o ’

i = po+op

Il
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= Yot BB lMuso (Bo%11 + By, vy
’ sip —_
= Yo — 355[Mi,, (,322,021,1 + 22,2)M1 sl (Y ; ,32,0Y1),
WO 2 —_—
V(830811 + $22)"Y(Y, By 2,0Y7),
’ 1
)) ’

/él = —Qz2 (
08, “\ wo(B3081,: + X22)7 (Y, - Bo oY
’ 1

1%

2
Zi1 - P2081,1Q1,1 %0,

Var() =
cov(fe, D) = f2,0%1,1Q1,1%,2,
Var(9) = Za2 — ¥22Q1,1%; 5,
,5’1)
Var [ '} = - .
s Q2,2

and

Ccov A ’ n =
[ B2 v
(830311 + B22) 130811, —1/(52
= Q2,2 ( ; 22, 3 > -1 ) 34y (;82’021’1 + 22 -1
”0('32’021’1 + 22’2) '52’021’1’ ‘”6(@2,021,1 + 22’,2;-13?2 )

Proof The expression for Qi,1 is obvious with respect to T,
remark after it. Further it is necessary to use Lemma 1.1 emma 2.1 ang the
(2.1). Since this is simple however tedious, it is omitteq under the scheme

(n]

Corollary 2.3 If in Theorem 2.2. X1,1 = 0?1 ang Sy = o2 "
2 = 034, then

1 /
Ql,l = ——'-_————Ml, , Q2’1 = ( n) 1 y7 !
2,02 +02 my1, ”61‘2 (;, )
0

2,0
Q2,2 = —(f3007 +73) ( 7i 1,1”0 o
N ”O ) #O”O .

Thus
. B2,00%

= Y 4 —F20%1
Qn 1+ Bgo? + Ml,uo(Y2 ~BaoYy),

2
N g3
v =Yy ——5——M
Bt v (Ve = pevy,

b\ _ ( n Vg ) ( (Y; ~ g, 0y,
“011 Holo MB(Yz — 62’ 0Y11) ) ,

e
B3 0011
Var(pp) = 02l — —5——s
(“‘) 1 ﬁ%,oaf +0’% Lo,
N B2,00% 03
cov(ft,¥) = 5 2V k0
’ B2,001 + 03
4
g2
Ml,l‘oa

Var(#) = 031 - —>—
O =l et
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Remark 2.4 The formulae given in Corollary 2.3 can be considered as a solu-
tion of the first problem, i.e. how to determine parameters of the calibration

curve. It is to be remarked that for oy = 05 and SBZ =0 (i.e. Bao = Bz) the
equality

and

V{i=1,...,n}(y2,i — 2:)/(y1,i = fs) = =1/B2,0
is valid. This is a reason that the treated problem is sometimes called “orthog-
onal regression problem”.

It is not necessary to emphasize that in the case 3232 # 0 (or a negligible
value) or g;z # 0, the calculation must be repeated with the new starting vectors
b= py+ gﬁ and ¥ instead of Y, and Y5, respectively; also the value (3, must
be substituted by 5,0 + 68,

Remark 2.5 If it is a priori known that ¢ = 07 = 02, where o is unknown,
then there is no problem to estimate it. With respect to Remark 1.2

¢ = [(Y1 = ) (Y1 — 1) + (Y2 = 2)' (Y2 = D)]/(n - 2).

In the next section we shall see that the estimator of the vector (¢%,0%)' in
the case o; # o when simultaneously o1/02 is unknown, cannot be found so
simply.

3 MINQUE of ¢? and o?

In this section the model of incomplete direct measurement with a condition

(Ylﬁ“()) ~ [(65>(031 agl)]’ : )

Baobe + (B201,-T) (617) + (1, g) (fﬂlz ) ~0

is under consideration.

Lemma 3.1 Let in the model of incomplete direct measurement with a con-
dition from Lemma 1.1 the matriz X be of the form X = P 9, V;, where

i=1
Vi,...Vy, are given symmetric n x n matrices and 9 = (9y,...,9,)' € 9 C RP
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is an unknown vector parameter; 9 is an open set in RP such that 9 € ¥ implies
Zle 9 V; is p.d. Let Ker(B1,B3) =M (IIE: ) , where K; is annx (n+k—q)
matriz and K, is a kx (n+k—q) matriz. Let v, o be any solution of the equation
b + Biv; + By, =0.

Then Bo-MINQUE (for more detail cf. [4]) of a function g'd, 9 € 9, ezists
iof

geM (S(MKlZOMK1)+) ,

where

{S(MK1EOMK1)+}ij =Tr [(MKxZOMK1)+Vi(MK120MK1)+Vj] )

,j=1,...,p, and To = E(Fo) = Y0_, %0,iVi, 9o € 9.
If this condition is fulfilled, then 3o-MINQUE of the function g'd, 9 € 9,

]
R
g"ﬂ = Z AZ(Y - 71,0)’(MK1 YoMk, )+Vi(MK1 EOMKI )+ (Y - ’71,0)’
=1
where the vector A = (M1,...,Ap) is a solution of the equation
S(MK1 EOMK1)+’\ =g.
Proof It is a consequence of Theorem 5.2.1 in [4].

Corollary 3.2 Let the matriz S(p,, oMy )+ be regular; thus there exists the
99-MINQUE of the whole vector 9 and it is

(Y - 71,0),(MK1 EOMKl )+V1 (MK1 EOMK1)+(Y - '71,0)

(Y - '71,0)'(MK1 EOMK1)+VP(1‘/IK1 20MK1)+(Y - ’71,0)
Theorem 3.3 (i) The matriz (Mg, ZoMk, )t can be expressed as
B1Q:,1B;

(in (1.4) the matriz o is used instead of =),

(i) The ezpression (Mg, ToMk, ) (Y -, 0) 18 equal to SHY —4,), with
41 given by (1.3), where the matriz Xy is used instead of 5.

Proof (i) Obviously B;K; + B;Ks = 0 = K, = —(B,B;) " 'B,B; K;. Thus

[I - B2(ByB,)'ByB1K; = Mp,BiKi = 0. If v, = 7,0 + Kyr then the
BLUE of 3, is

—— 2—1
M1 =Y00 +tKiT =710+ P2 (Y —71)
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and with respect to (1.3) also
1= (I—-%oB1Q1,1B1)Y — ZoB1 Qi 1b.
Thus T - 0B} Q1,1 B; = PL .
To prove directly this equality it is necessary and sufficient to show that
(a) (I-2oB1Q1,1B1)*> =1- %,B{Q1,,By,
(b) M(I—30B;Qi,1B;1) = M(K,),
() To'(I - 2eB{Q1,1B1) = (I-B,Q;1.1B1%0) %5

The equality (a) is a direct consequence of (1.4).
(b) Obviously

Mp,B1(I - 2¢B1Q1,1B;) = Mp,(B; — B1X:B]Q;,1B1) =0,
since By — B;XoB}Qy 1B; = BoQy; (cf. (1.4)). Thus
M(I - 2B;Q;,1B;1) € M(Ky).
Since I — XyB1Q;1,1B; is idempotent,

r(I-%oB{Q:,1B;) = Tr(I - $oB,Q1B:)
T!'(I) - ﬁ(EQBi Q1,1B1).

Il

Further B1XoB{ Q1,1 + B2Q2,1 =1 and thus

Tr(ZoB1Q1,1B1) = Tr(B1ZoB;Q1,1) = Tr(I — BsQa )
= q¢—Tr(Q21B2) = ¢~ Tr(Ixx) = ¢ — k.

Thus (I - %eBiQ1.:1B1) =n+k —q.

Further

n+k—q=

= dimM(Kl) = dim M L K| = dim M(K
K, _(B,B,)~'B,B, ) K1| =4 1),

. . I
since the matrix i ;
( ‘(B'sz)"lB’zBl ) is of the full rank in columns.

The implication

M(I-%B{Q1,1B1) C M(Ky) & dim M(I—5oB,Qy1B;) = dim M(K;)
= M(I-3%,B{Q;,1B;) = M(K;1)
proves (b).

(c) is obvious.
Since

-1 -
(Mg, ZoMg, )t = 2511\/@3 =311 - Pfg;l) = B]Q1,1B1,
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the statement (i) is proved.
(ii) The expression (Mg, XMk, ) (Y - Y1,0) can be rewritten as

- st _ —
Eol(I—PKol )Y =710 =E5(Y =70 ~Ki7) = E5HY - 4,).

Theorem 3.4 In the framework of the model (3.1) we have

n— B3> B2
S L= . 2,00 2,0
(M, SoMx;) (820030 + 03 0)? ( B3, 1 )

and for g € M(S(MKlzoMK1)+)

g (a%) ‘Alm(Yl—m (Y, - n>+Az~(Yz-V) (Y2 - ),

o3 92,0

A1 1
S(Mic, SoMx, )+ (/\2) = <92 .

Proof With respect to Theorem 2.2 and Corollary.2.3 we have

+ 1
Q1,1 = (M4, (82 0%1,1 + T2,2)My, =
( Ho s I-Lo) :33,0‘7%,0 +(7%,0

(here the obvious equality My, = Mj , is utilized) and thus

where

Ml,uo

1 6% .M —fB2.0M
Mr. oM + Bl B, = 2,048V41 105 2,04V11 ug ) .
(Mg, oMk, ) 1Q1,1By —mﬂg,o"%,o ol ( “BroMins M,

Since Tr(Mj ,,) = n — 2, we obtain
n—2
(83,0070 + 03 0)*
{S(Mu, oM, )+ 11,2 = {S (M, BoMic, )+ F2,1
n—2 2

320
(830070 +030)

Tr(B1Q1,1B1ViB1Q1,1B1V1) = {S(ay, oMy, )+ h1 =

Tr(B1Q1,1B1ViB|Q1,1B:Vy)

4
B0

Il

n—2

'Qq.,B1V,B! (B202, +020)2
Tr(B1Q1,1B1V2B{Q;,1B1 V) (82002 o +020)?

{S(Mic, oMy )+ Y22 =

As far as the terms
(Y = 71,0) (Mg, oMk, )T Vi(Mgk, ZoMk, ) (Y = 710)s 1=1,...,p,

are concerned, it is sufficient to realize the relationships (implied by Theorem
3.3. (ii))

(Y- o)'(MKl SoMg, )TV (Mg, oMk, (Y —7,0) =

5 Y- 4 awl 0 I, 0 o7k, 0) Yi-p _
Y- 0, o5l 0,0 0, o521 Y, - o

1 . -
= (Yi-a) (Y1~ 2
1,0
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and

(Y - "/1,0)'(MK1 ToMk, )TV, (Mk, ToMg,) (Y ~ Y10)
L (Yi-i "(o72L, 0 0,0) /o3, 0 Y, -4
Y, - 0, o;31)\0, 1)\ 0, 0;31)\ Y20 )"

1 . N
= T(Yz - U)I(Yz - I/).
03,0

Corollary 3.5 The (07,03 ¢)-MINQUE of the function
g'(01,03)',(01,03)" € (0,00) x (0,00),
exists iff g = c(ﬂg,o, 1), where c € RY; in this case the estimator is (c=1)
(83001 +03) =

_ (830030 +03,)* B30 oy A 1 N A
= o)L By |of, V1A =+ S (Yo Y (Yo = 2)

Proof With respect to Lemma 3.1. and Theorem 3.3.

g€ M(S(MKIEOMK1)+) =>g'l= gls(_Mxl):‘oMxl)ﬁ‘R"

where
Ri= (Y -9)' S5 ViSg (Y -4), i=1L...,p.
In our case
S- _ (/3%,00'%,0 +0'%,0)2 ﬂé,gy ﬂgyo -
(Mg, SoMk,)*+ = n—2 ,63,0, 1

_ (83,0030 + 03,)° 1 ( 203, + 1, ;ﬂg,o )
n—2 1+ 551,0)2 ~BS0, 1+B50+ B30 )"

(Here a special version of a g-inverse of the matrix Sary, soMy,)+ is given,

I
i.e. the Moore - Penrose g-inverse.) Since X£;'V;Xy ! = ;,‘%j.‘ (0’ g) and
0

2
07

The estimator (83 502 + 03) is a good check of the value 83,07 o + 03, in
the case that in Corollary 2.3 the value (3 yo7 o + 03 o must be used instead of
B300% + 03

Under the design of experiment till now considered, the vector (o?,02)’
cannot be estimated. Thus it is necessary to change the design. The simplest
way how to do it is to replicate the measurement.

BVt = ;é}—o- ( 0 ) , we obtain the equality in the statement. O
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Let Y(3),...,Y(m) be m replications of the observation vector Y in the
model

(Y71, 5(9)), (Z; ) eV,

2

Vz{(‘;) :ueR",veR’“,b+B1u+B2v:0}.

Y = (Yh)v - ,Yzm))’ is the observation vektor after m replications, we have
the model )
1
Y (1,9Dy,I® %V, eV,
(— (Im )71 ; > ( Yo )
which is equivalent to
P
Y-(18D)7,,,(1®K)7,I® Zﬂivi) , T€RVtEq (3.2)
=1

where v, is any vector satisfying the equality b + B1v; ¢ + Bav,0 = 0 and
the matrix K, is the same as in Lemma 3.1.

Lemma 3.6 In the model (3.2) the 9o-MINQUE of a function g'9, 9 € 9, is

=1 i=1

p m
gd = ZA1 {TI' {Ealvzzal Z(Y(j) - Y)(Y(j) - Y)’} +
+m(? - 71,0)’(MK1 EOMKI )+Vi(MK1 EOMKl )+(Y - 71,0)} )

where Y = L >oim1 Y5y and the vector A = (A1,...,)p)" is a solution of the
equation

[(m - 1)8231 + S(MKIDOMK1)+] A=g.
If Vi,...,V, are linearly independent, then Szo—a is p.d. (thus regular).

Proof It is a consequence of Theorem 6.1.1 in [4].

Theorem 3.7 Let the model (3.1) be m-times replicated. Then the (034,03 )-
MINQUE of the vector (o%,032)" is

~2 1 4 p4 4 2 -

oy ) 1 2 2 2 010850, 01,0850 K1

. = —— |I—-c(m,n 0% 4,0 RS i N
( &3 ) (m—1)n [ (.1, B.0,91,0,92,0) (Ug,oﬁ%,o; 050 Re )’
where

c(m’“aﬂg,m”io,ag,o) =
_ n—2
(ﬂgyoaio +050)[(m = 1)n +n — 2] + 26 407 05 5(m — 1)n
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and

m
Br= (Yo — Y0 (Yo - Yo) +m(Ya - 4)'(Y1 - &),

j=1

m
A Z(sz(ﬂ') = Y2) (Yo, — Y2) + m(Ys — ) (Y2 — i)

j=1

S
I

0 .
Proof Since V; = ( (I)’ 0) and V, = ( g’ (I)> , are linearly independent,

the matrix SE——I is regular and since both matrices SE~1 and Sk, $o My, )+ are
at least p.s.d., the criterion matrix

(m ~ D)Ss-1 + S(My, ToMi, )+

is p.d.
The matrix S(ay, 5o My, )+ is of the form hh', where
- __vn-2 (f, ) :
ﬂ%,o"%,o + ‘7%,0 1 ’
thus the relationship
S-1,hnw'S:t
_ 1 oty ot
—1)Sg-1 +hh’ S‘_1~ o .
[(m ) )301 ] =5 (m—l)m—l-{—h'S;,h
0
enables us to express the matrix [(m — DSg-1 + S(ate, 50 Mg,)+] " in our case
in the form
1 afo, 0
=D+ Szl = s (B o, ) -
1 Uloﬂzos Uluﬂn)(“fo: 0 )
il e o m,n, P2 4,02 0,0 / ’ .
(m—1)n ( 2.0071,0 20)( 50P50, O30 0, o3y

Further Theorem 3.3 (ii) must be used; with respect to it we obtain

(? - 71,0)'(MK1 YoMk, )'Fvi(MKl YoMk, )+(?— - ’71,0) -

Y. -a\ (o2, o o I, 0 Y-
- N i -2 V; ) —9 N
Y, -0 0, o551 0, o551 Y:-o
and obviously
m

m
o e - - 1 - -
T[S ViZs Y (Y - V(Y - Y)] - i > (Yi5) = Y (Yi,5) - V)
j=1 V=1
m . . T N
B3 V2B ) (Y - V(Y - )] = p > (Yo = Yao) (Yo, — Ya).
=1 0 i1

Now it is obvious how to finish the proof. (m]
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4 Conclusion remarks

If it is necessary to characterize the random variable £ given by the expression
(p — B1)/ B2, where 7 is a registration of the value v given by the second mea-

surement device and Bl and ,32 are given by Corollary 2.3, then it is necessary
to determine the bias

b=E(®) -

Pr_ B - 10,51, 82)

and the variance Var(§).
Here the formulae given in [1] can be used. Since 7 is stochastically indepen-
dent of ( gl ) we obtain an approximate value of b in the form [1], Corollary
2
3.5 (the value v; ; cf. Corollary 2.3)

2
2 g3, 0, 0
b = %T{' auf(y’ﬁl,ﬁZ) ( 0, V1,1, 'U1,2> +...
0, wva1, vo
a(ﬂl)aw,ﬂl,ﬂz) e
B2

| 0, 0, -1/p3 02, 0, 0
= 5 Tr 07 09 1/:32 , V1,1, V1,2 +...
"1/,33, 1/,3%, 2!—:? , V2,1, V2,2

v vV —
_ 122 V=B
2 162

Further (in the case of normally distributed errors, cf. Corollary 3.6 in [1]) an
approximate value of the variance is

Var (U-ﬂﬁ]) _
B2

_ otwsupy) (B % 0 05w,
) o 2 v
)
X
2

0, wva,1, V2,2
2
2 02’ 0) 0
+'];rI‘r 8 f(V;,Blyﬁ2) 0, v1,1, V1,2 + ..
2 v 0, v21, va2
o\ B | 0w, B, 0B)
B2

o2 1 v—Fh (v=5)°

= =5 +v1,155 + 2012 + 22

’ B ’ 4
5 2 B3 Bz

—g— U2+ ....
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2 2 2
4 V1,1V2,2 +V v— v—
+ iv2,2 + 4 12 +4 5’31 V1,2V2,2 + 2£'—"‘6@l'2_1)%)2 + ...
/32 ﬂZ ﬂZ 2

The given formula reflects reality adequately if the distribution of the errors
can be approximated by the normal distribution however the support of the
probability measure of the actual errors is included into the domain of conver-
gence of the Taylor series considered. By a simulation it was verified that in the

case 3% < 0.1 the given approximation is sufficient for practical purposes (in

more detail cf. [1]).
In the practice the polynomial

vi=P1+piBs+piBs. ..+ pf T B
i=1,...,m, k<mn, and p;#p; formorethan Kk couples

is frequently used.
If there exists a special reason to use a nonlinear (in parameters) calibration
curve, then the procedures demonstrated in preceding sections can also be used.
Let, e.g. the calibration curve be of the form

v = f(p,B1,B).

Then the linearized model can be written in the form
Y1 —p, ~ [ op i1, 0
Yz l_ 1 74 ? 0, 22,2 ’
f(ﬂo,l,ﬂo,l,ﬂo,z)
. op
()

v
(5)-

: 8B ) T
0f (to,n, B1,B2)/0(B1, B2) ] 'Br1=Po,1iB2=Po.2

(5,31 ) _ (ﬁl—ﬂo,l)
0832 B2 — Bo,2
where

A= Dla'g(af(:ula ﬂoyl’ ﬂ0,2)/al‘l'1'll1=#o,1 g )af(l-l'na 130,17 ,HO,Z)/aP/n|pn=ug',.)

and now we can procede analogously as it was already demonstrated.

F(po,n, IéO,l ,Bo,2)
Of(po,1,B1,B2)/0(B1, Ba)
+ i
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