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Abstract 
This paper treats quartic splines smoothing mean values. Local rep­

resentation using the first and the second derivatives in knots is applied. 
Two algorithms of computing these local parameters are presented for all 
three types (natural, periodic and complete) of smoothing spline. 
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1 Quartic spline interpolating mean values 
1.1 Statement of the problem 
Definition 1.1 Let us have the set of knots 

(Ax) : a — x0 < x\ < ... < xn < xn+i = 6, hi — 2^+1 - xi 

The quartic spline S41 (x) with defect one on the knot sequence (Ax) is a function 
with properties: 

1. S±i(x) is a fourth order polynomial on every interval [xi,#i+i], i = 0( l )n 

2. 541 € C3[xo,xn+i] (Continuity condition) 

* Supported by grant No. 201/96/0665 of The Grant Agency of Czech Republic. 
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The vector space of functions satisfying these properties will be denoted by 
541 (Ax); it is known that dimS4i(Ax) = n -f 5 (see [7]). 

Definition 1.2 Let us have given values gi, i — 0(l)n. We say that the quartic 
spline S4i(x) G 54i(Ax) interpolates mean values Qi on the knot sequence (Ax) 
(MVI spline) if the following conditions are satisfied: 

ap.r+1 

/ S4i(x)dx — higi, i = 0(l)n (1) 
x,-

Remark 1 Because dim54i(Ax) = n -f 5 we need prescribe four conditions 
besides MVI conditions (for example two boundary conditions at both boundary 
knots—function and some derivative values, periodicity conditions, more general 
conditions). Some subclass of such splines will be used in the following. 

Definition 1.3 Let us have given values so,mo,sn+i,mn+i. We call a MVI 
spline 54i (x) 

(a) a natural quartic spline if it satisfies boundary conditions 

S'lM = SM = S[*>{a) = S[f(b) = 0; (2) 

(b) a periodic quartic spline if it satisfies boundary conditions 

S&)(a) = sH)(b), j = 0(1)3; (3) 

(c) a complete quartic spline if it satisfies boundary conditions 

54i(a) = s0, S41(a) = m0, S4i(&) = sn+i, 541(6) = mn+i. (4) 

1.2 Local parameters, continuity conditions 

Theorem 1.4 Let us denote by gi mean values (1) of S41 (x) on [x«,Xi+i], i = 
0(l)n and further mi = S^Xi), Mi = S'l^Xi) for i = 0(l)n -f-1. Then we can 
write the spline S41 on every interval [x^Xi+i] with these parameters as 

Su{x) = gi + mihi I ~q4~q3+q- 7^ J + m i + i ^ ( ~ -g 4 "+" ^3 ~ 20 ) "+" 

+ Mt? (\<> - \f + \f - i ) + *»* (i,« - i,» + 1 ) (5, 

where q = (x — Xi)jhi is the local parameter, q € [0,1]. 

Remark 2 

• The local representation (5) we shall denote (m, M) representation of quar­
tic spline interpolating mean values on the knot sequence (Ax) (for the 
similar representation of quartic splines interpolating function values see 
[7])-
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• The coefficients (quartic polynomials in variable q) multiplying the pa­
rameters gi, m ,̂ mi+i, Mi and Mi+i are often called basis functions of 
the MVI problem in (m, M) representation. 

• The local representation (5) used for neighbouring intervals ensures im­
plicitly the continuity of £41 (x), S^x) in common point. 

Theorem 1.5 The continuity conditions for S±i(x) and S^'(x) in the knots 
Xi, i = l(l)n we can write as recurrence relations: 

3 7 3 1 
—hi-xmi-i 4- 25(^-1 + hi)mi + 2Qhim+l + M ^ 1 ^ " 1 + 

+ r^(hi ~ hLi)Mi - 35^M^+i = « ~ 9i-u (6) 
1 2 

rrii-i + (p\ - l)mi -p?mi+! -f -fci-iMi-i + 3 (^ -1 +p2iK)Mi + 

+ ^ i P ? M i + 1 = 0 , (7) 

where pi = hi-i/hi, i = l(l)n. 

Proof The recurrences follow from (m,M) representation when comparing 
expressions for 54i(rr), S4-/(x) at common point Xi of intervals [x.i_i,Xi] and 
[xi,Xi+i]. Let us mention that the conditions (6), (7) form 2n linear equations 
with 2n + 4 unknown parameters m^ Mi. D 

1.3 Computing local parameters m, Af 

For MVI spline on the knot sequence (Ax) we have prescribed the mean values 
Qi. Let us denote Si = S4i(#i), Tj = S41 (#i) for i = 0(l)n -f 1. Unknown 
local parameters m, M of the spline S41 we obtain as the solution of the system 
of linear equations created by continuity conditions (6) and (7) completed by 
corresponding boundary conditions. 

Let us mention the special cases introduced in the Definition 1.3 

(a) Natural spline (Mo = Mn+i = T0 = T n + i = 0) 
The terms with M0 and Mn+i are left out in (6) and (7) and the whole 
system is completed by expressions for T0 and Tn+i taken from (m, M) 
representation: 

~Mmo + :kmi~lMl = 0 (8) 
f\ f\ 0 

-72 -m n +i + T2mn + T - M n = 0 (9) 
nn nn tin 

(b) Periodic spline (s0 = 8n+i, m0 = mn+i? M0 = Mn+i, T0 = Tn+i) 
Using m0 = mn+i, M0 = Mn+i, continuity conditions (6) and (7) in 
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knot x\ are rewritten as 

^ 7 3 1 
2Qlk>mn+1 + ^ ( l t o + h1)m1 + y^\in<i + -^h\Mn+1 + 

+~(ht ~ him - ±h\M2 = 9l- 9o, (10) 
1 2 

m n + i + (p\ - l )mi - P i m 2 + - f t 0 M n + i + ~(ft0 + Pifti)M x + 

+ i f t i P ? M 2 = 0 . (11) 

Putting s0 = 5 n +i, To = Tn+i, the system (6), (7), (10), (11) is com­
pleted by 

3 7 3 1 
— h n m , n + — (ftn + ft0)mn+i + — h0m1 + 7^hnMn + 

+ ~ ( ^ 0 ~ h2
n)Mn+1 - ~hlMX = go - gn, (12) 

m n + ( p n + 1 - l ) m n + i - Pn+imi + - f t n M n + 

2 1 
+ 3 ^ n + p n + i f t o ) M n + i + - f t o P ^ i M i = 0, (13) 

where p n + i = ftn/ft0. 

(c) Complete spline (with prescribed values So,5 n -f i ,mo,m n + i j 
The terms with prescribed mo and m n + i are transferred to the right sides 
of (6) and (7) and the whole system is completed by expressions for SQ 
and s n + i in (m,M) representation: 

3ho hn%, ftn,, , 7 f t 0 ,., .x 

~ - 0 m i - 2 § M o + 3 0 M l = So - " + YtTmo ( 1 4 ) 

onn nn /i_, t tin . . 
l o " m n ~~ 20 n + 1 30 = S n + 1 ~ P n "" ~ 2 0 " m n + 1 ^ 

In all three cases the completed system has formally similar form: 

(£ £)(_)-(£> <*> 
The elements of the matrices A l , A2, A 3 , A4 and B l , B 2 are described in con­
tinuity conditions (6),(7) and boundary relations (8),(9) (eventually (10) -(13) 
or (14),(15) ). They depend on the geometry of the knot sequence (Ax) only. 
The matrices A l , A4 are tridiagonal and A2, A 3 axe band matrices with three 
nonzero bands (or all matrices are cyclic tridiagonal in case of periodic boundary 

/ A l A2 \ 
conditions). We can prove the regularity of the matrix f . 1 for equidis­

tant knot sequence (Ax) using more detailed concepts of diagonally dominant 
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matrices (given in [2]). In the case of general knot sequence the computations 
did not show any problems with the regularity, but we have not proved it in 
general. The vector p contains prescribed mean values (and prescribed bound­
ary conditions in case of complete spline) and m, M are vectors of unknown 
first and second derivatives in knots. 

In the case of regular matrix of the system (16) we can denote 

0 / A l A 2 V 1 / B l \ ,„* 
S = ( A 3 A 4 J ( M ) ' (17) 

and we write the solutions of (16) as 

Sp. (18) 
( « ) 

Remark 3 The (m, M) representation and some other representations of quar­
tic splines interpolating mean values and algorithms for computing unknown 
parameters of these representations are described in [3], [4] and [9], 

1.4 Extremal properties of MVI quartic splines 

Let us denote 

V = {/ 6 Wi[a,b}; /*<+1 f(x)dx = hm, i = 0(l)n}, 

Vper = {/ £ V] fis periodic with the period (b — a)}, 

Vcom = {/€ V;/(o) = 30;/'(a) =m 0 , / (6 ) = sn+i,/'(6) = m n + i } 

where SQ, sn+i, mo, mn4_i are prescribed numbers, 

and further introduce the functional 

Ji(/) = ll/"lli = (\f"(x)?dx (19) 
1a 

(*Ii(/) can be considered as some measure of smoothness of the curve /(#)). 

Theorem 1.6 Functional J\(f) attains its minimum 

(a) on the set V at some natural spline S41; 

(b) on the set Vper at some periodic spline S41; 

(c) on the set VCOm at some complete spline S41. 
Xi + l 

Proof Assume that / £ V and S41 interpolates mean values g% = ~- J f(x)dx 
Xi 

for i = 0(l)n. Using integration by parts we have 

(S'AJ" - SJ'i). = / -%(/ - 54i)"d.5 = f; f ,H s^i (/ - 54i)"rfx = 
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= Ett54i(/ - flWttr - t -W - 5«)]^;+1 + 

+ r " 5it}(/ - 54i)rfx} = [S4'x(/' - S41)]» - [«£(/ - 54i)]». 

Then any from former mentioned boundary conditions 

(a) natural conditions S'4\(a) = S'4\(b) = s4'{(o) = S'4\(b) = 0; 

(b) periodic conditions S$ (o) = 5 ^ (6), j = 0(1)3; 

(c) complete conditions 

«S4i (o) = /(a) = s0, 54i(6) = /(&) = Sn+i, 
S'41(a) = f'(a) = m0, S'41(b) = f'(b) = mn + 1 , 

imply (S41,f" - S41)2 = 0. Using it and writting 

II/" - S41UI = iiriii - 2(s4i.r - s^h - ns4iin 

we obtain | | /"|g = \\S'4\\\l + | | /" - S&|& therefore the inequality 

lirill > li-%||i holds. O 

Remark 4 

• We say that splines introduced in the previous theorem have the extremal 
properties mentioned here with respect to the functional J\. 

• The general theorem for spline of even degree is formulated in [6]. (The 
general theorem for splines of odd degree can be found here, too.) 

• Some special theorem of this kind for quartic splines is referred in [5]. 

2 Quartic smoothing spline 

The smoothing splines gives some compromise between an interpolation of pre­
scribed values and a least squares approximation of them. The statement of the 
general smoothing problem for even (and also odd) degree splines is given e.g 
in [6]. The algorithms for linear (see [6],[9]), quadratic (see [6],[8]) and cubic 
splines (see [1],[6],[9]) are often mentioned. The high order splines on equidis­
tant knot sequence are often used too (see [5]). In this section two algorithms 
for quartic splines on general knot sequence are described. 
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2.1 The smoothing problem 

Let us have given a knot sequence (Ax) with prescribed values g = (go, • • -gn)T, 
positive weight coefficients w = (w0i... ,wn)

T { in case of complete spline 
g = (m0,50,go,gi,...gn,Sn+i,mn+i)T and w = (w-2 , . . . ,w n + 2 ) T } and some 
smoothing parameter a > 0. 
Let us denote: 

V5 = TV2
2[z0,xn+i], 

Vper = {/ ^ ^ s ; / & periodic with a period (b - a)}, 

55*4-1 

Pi = E" / /(z)cte, i = 0(l)n, 

and further introduce the functionals 
rb 

(20) Ji( / ) = ||/"||2 = / [fll(x)]2dx ( a measure of smoothness ) , 
J a 

n 

•®-(/) ~ slwi(9*> ~~ P{}2 ( a measure °f interpolation j , (21) 
i-Q 

E2(f) = w^mo-mo)2+UJ-l(so--so)2+E1(f) + 

+wn+l(sn+l - s n + i )
2 + ivn+2(mn+i - m n + i ) 2 (22) 

( boundary conditions acceptance measure included ) . 

Theorem 2.1 Let the knot sequence (Ax), values g and coefficients w,a be 
given. Then the functional 

Uf) = Ji(f) + a.E1(f) (23) 

attains its minimum 

(a) on the set Vs at some natural spline S41; 

(b) on the set Vs
er at some periodic spline S41. 

The functional 
Mf) = Ji(f) + aE2(f) (24) 

is minimized on the set Vs by some complete spline S41. (Let us mention that 
in all cases the extremal spline interpolates some unknown mean values pi.) 

Proof 

(a) Assume that f € Vs gives a minimum to J2 on Vs and that pi are cor­
responding mean values of f(x) and that natural spline S4i(x) G Vs in­
terpolates these mean values. Then E\(f) = JSifSu) and extremal prop­
erties of S41 from Theorem 1.6 imply Ji(Su) < J i ( / ) ; we have therefore 
MS41) < Ja(/), V/ G Vs. 
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(b) In case of periodic spline the proof is similar. 

(c) Assume that f eV8 gives a minimum to J3 on Vs and that pi are corre­
sponding mean values of f(x). Let S4i(a;) € V8 interpolate mean values 
Pi and satisfy boundary conditions s0 = f(xo)>Sn+i = f(xn+i),m>o = 
f(x0)1mn+1 = f(xn+i). Then E2(f) = E2(S41) and extremal properties 
ofSii imply Ji(54i) < Ji(/); we have therefore J3(54i) < J3(/),V/ G Vs. 

• 

Remark 5 The minimization problems (23) and (24) in Theorem 2.1 are often 
called the smoothing problems. 

2.2 Functional J1,E1 and E2 in m, M terms 

We give the more detailed descriptions of functionals to be minimized in terms 
of (m, M) local representation here. 

Theorem 2.2 If S41(x) is MVI quartic spline then we can express functional 
Ji(S41) as a function of the first and the second derivatives of S41 in knots Xi 
as follows: 

MS*) = t (gfrm? + gf-m?+1 + ^ M ? + %-M?+1 + 2 ( - ^ m . m i + 1 + 
i=0 v 

•i-^miMi + ^miMi+1 - ^mi+1Mi - ^mi+1Mi+1 - ^M^M^i ) ) 

(25) 

Proof Differentiating twice the (m, M) representation we obtain 

S4l(x) = Ai(q)mi + Bi(q)mi+1 + Ci(q)Mi -f- Di(q)Mi+1 

with 
Mq) = 6(q2~q)/hu Bi(q) = -Ai(q), 

Ci(q) = 3<72-4<1+l, £>*((?) = 3^ 2 -2g . 

-*M-I 2 l 2 

Using the identity / (541(^)) dx ~ hi J(S41(q)) dq we can compute: 
X{ 0 

1 1 
hifA^dq = 6/(5/.,); hiJCf(q)dq = 2ftť/15; 

o o 
i i 

hijD
2

i(q)dq = 2^/15; hi f M<l)Ci(q)dq = 1/10; 
o o 

hijM9)Di(9)dq = 1/10; hij C^D^dq = -/.,/30. 
0 0 

Substituting these results into Ji(5-ti) = 1 2 / (•S410*0) ^ w e obtain (25). • 
i=0 Xi 



Some algorithms for quartic smoothing splines 87 

2.2.1 Natural spline 

Under natural boundary conditions (2) we can write (25) in the following matrix 
form 

J.CSu>-(i.*.JO(S.£)(3) , (26) 

where we use the vector and matrix notation: m = (mo,.. . m n + i ) T 6 I?n+2, 

M = (M 1 , . . .M n ) T eRn, G l G i ? ( n + 2 ) x ( n + 2 ) , 
/ _6_ 6 \ 
/ KiS„ Rf.„ \ 

G1 = 

6 
5/io 

6_ , _6_ J__ 
5/i, 

5ho 5/io 5hi 5/ц 

5/in-i 5/in- t 5hn Ъhn 

6 6 , 
Ьhn Ъhn / 

°i * -— o — 
ю " ю 

G2 = 

- 0 —• ю , ю 
—-- 0 

V 
10 

ç. Ыn+2)xn 

) 
G4 Є ñ n x n , 

/ 2 ( h 0 + / ц ) _h_ 
I 15 30 

G4 

зo 

_ å i 2(l-i+l-2) 
30 15 

h2 
30 

hn-2 2(/ ln-2+/łn-l) 
30 15 

Һn-l 
30 

fcn-1 
30 

2(fen~l+/ln) 
15 

(tridiagonal matrices; elements not described are equal zero). 

2.2.2 Periodic spline 

Under periodic boundary conditions (3) we can write (25) in the following matrix 
form 

wad-o-*.m(&£)(_}) • 
where we use the notation: m = (mi, . . .mn+1)

T 6 Rn+1, 

M = (M1,...Mn+1f Gi?n + 1 , G l G i ? ( n + 1 ) x ( n + 1 ) , 

(27) 
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г* _ _ 

f 6 , JҘ_ 
эho 5/ii 

—6 
5hi 

- 6 
5hi 

6 _L 6 
5hi "̂ " 5Һ 2 

- 6 
5Һ 2 

- 6 
5ho 

\ 

vзгX — 

\ 
- 6 

5ho 

- 6 
5Һ„_ 

6 1 6 - 6 
5 h n 5 h n ___+.___] 

5 h n 5ho / \ 
- 6 

5ho 

- 6 
5Һ„_ i 5 h „ _ i ! 

- 6 
5Һ„ 

6 - 6 
5 h n 5 h n ___+.___] 

5 h n 5ho / 

í 
1 

10 

- „ > 

G2 = є д(n+l)x(n+l) 

\ 
1 

10 

-4 o 
10 

1 
10 

o ) 
G4 Є 1 ï< n + l ) x ( ? г + l ) 

ì 

/ 
2 ( h 0 + h i ) 

15 

_ 1 
30 

_ _ 1 
30 

2 ( h i + h 2 ) 
15 

___ 
30 

_ h _ \ 
30 i 

G4 = 
h n - l 

30 
2 ( h n _ i + h n ) 

15 
__ 
30 

V _ _ Q _ 
30 

h„ 
30 

2 ( h n + h 0 ) , 
15 / 

(cyclic tridiagonal matrices). 

2.2.3 Complete spline 

Under complete boundary conditions (4) we can write (25) in the following 
matrix form 

. , _-. / Gl G 2 W m \ 
JÌ(SĄI) = (m 

+ p ^ ( H l г , H 2 г ) ( ^ ) + ^ K p , 

+ ( m T , M г ) ( И l j 

(28) 

where we use the notation: _> = (mo, So, po, Pi • • •, Pn, sn+1, fnn+1) € i? n + 5 , 

m = ( m 1 , . . . m n ) T e J ? n , M = (M 0 , . . .M n + 1 ) T € i T + 2 , Gl e Rnxn, 

\ / JĽ. +. ___ 
/ 5Һ 0 5hi 

6 
5hi 

Gl 

G2 -

- 6 
5hi 

J Ľ _|_ ___ __. 
5hi 5Һ 2 Shг 

5 h n _ 2 5 h n _ 2 5 h n _ i 
- 6 

5 h n _ i 

5 h n _ i 
6_ 6 

5 h n + 5Һ„ / 

10 10 

£ дnx(n+2) 

10 u 10 
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/ 2__ 
/ 15 

G4 

ҺQ 

"зo 

_ _ ì й 2 ( h O + Ь i ) __l_L 
30 15 30 

\ 

І n - l 2(/ j n - i+/_ n ) 
30 15 

30 

_____ 
30 

2/in 

15 

£ jj(n+2)x(n+2) 

У 

H I € JR
nx(n+5) H2 G i ? ( n + 2 ) x ( n + 5 ) , K e jx(n+5)x(n+5) 

( -6/(5/i0) t -= i = l 
(Hl)ij = < -6/(5/in) i = n, j = n -F 5 

I 0 others 

f 1/10 t = l , 2 ; i -= l 
(H2)^ = < -1/10 i = ra + l ,n + 2; j = n + 5 

I 0 others 
H 

H1 
H2 

(6/(5fto) * = J = 1 
(K)^ = ^ 6/(5/in) i = j = n + 5 

^ 0 others. 

We shall use the matrix notations also for functionals J3_, PJ2 in all cases of 
boundary conditions mentioned. When we denote the diagonal matrices of 
weight coefficients 

Da - d iagM^o , D2 = diag[u; i]^2 

then the matrix forms of functionals _E_ (defined by (21)) and _E2 (defined by 
(22)) are: 

. = ( _ - p ) г D _ ( _ - p ) , 

Eг = ( 5 - p ) T D 2 ( 5 - p ) . 

(29) 

(30) 

2.3 Computing local parameters of the smoothing spline 

Let us denote 

G - V G 2 r G4 

where G l , G2, G3, G4 are matrices given by (26) (eventually (27) or (28)). Let 
us have the matrices S (defined by (17)), G, D_, D 2 , H, K (described in (28)) 
and vector g. The algorithm for computing local parameters of quartic splines 
smoothing given values g can be described in special cases mentioned as follows: 

(a) Natural (or periodic) spline 
Substituting (29), (18) and (26) (or (27)) into functional J2 defined by 
(23) we obtain the value of J2(5f4i) as the function of p (with the same 
notation) given as 

MSn) = J2(p)=pTSTGSp + a(g-p)TD1(g-p). 
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Prom necessary conditions of minima 

J2» = 2S T GSp - 2aDi(g - p) = 0 

we obtain the system of linear equations for computing unknown mean 
values p: 

( S T G S + a D i ) p = aDig (31) 

Finally we compute unknown parameters m and M using computed p and 
(18). 

(b) Complete spline 

Substituting (29), (28) and (18) into J3 (defined in (24)) we obtain 

J3(p)=pTSTGSp + pTSTHp + pTHTSp^pTKp + a(g-p)TD2(g~p). 

The necessary conditions of minima 

Jfo) = 2 (S T GS + S T H + H T S + K)p - 2aD2(g ~ p) = 0 

produce the system of linear equations for computing unknown values p: 

( S T G S + S T H + H T S + K + a D 2 ) p = a D 2 g (32) 

Then we again compute unknown parameters m and M using (18). 

2.4 Existence and uniqueness 

T h e o r e m 2.3 Let us have given the knot sequence (Ax) with prescribed values 
g = (go, • • -gn)T, weight coefficients w = (wo,... ,wn)

T { in case of complete 
spline g = (m0 ,s0 ,9o,9i>>>-9n,sn+i,mn+i)T andw = (w^2,--^wn+2)

T } and 
the smoothing parameter a > 0. / / f̂te mqtrix of system (16) is regular, then 
the natural, periodic and complete smoothing quartic spline exist and they are 
determined uniquely for all a > 0. 

P r o o f The definition of functional Ji implies Ji > 0. The matrices D i and 
D 2 are positive definite (i.e. uTDiu > 0, \/u ^ 0, i = 1,2) because D i and D 2 

are diagonal with positive factors on the diagonal. Then 

(a) 0 < Ji(u) + auTD!U = u T ( S T G S + aDi)w, Mu ^ 0 for natural and 
periodic splines. 

(b) 0 < Ji(ti) + auTD2u = uT(STGS + S T H + H T S + K + aD 2 )u , Vu # 0 
for complete spline. 

These relations imply that matrices ( S T G S + S T H + H T S + K + a D 2 ) and 
(S T GS + a D i ) are regular and therefore systems (31) and (32) have only one 
solution p . The parameters ra, M are then uniquely determined from (18). • 
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2.5 Computing local parameters by optimization 
techniques 

The smoothing problem (23) for natural and periodic spline has the following 
form of quadratic programming problem (relations (16), (29), (26) or (27) used): 

/ G l G2 0 \ / m \ 
Minimize ( m T , M T , p T ) G 2 T G4 0 M ] + 

\ 0 0 oDi / V P I 

(mT,MT,pT) ( 0 j +agTT>l9 

-2aT*ig J 

..A. f Al A2 - B l 
under conmUons I AЗ A4 - B 2 

4 P 
•C) 

The smoothing problem (24) for complete spline has the following form of the 
quadratic programming problem (using (16), (28) and (30)): 

/ G l G2 H I 
Minimize {mT ,MT ,pT) G 2 T G4 H2 

\ H 1 T H 2 T K + a D 2 

+ (mT,MT,pT) I 0 \+agTT>2g 
-2aB2g I 

. A l A2 - B l 
under conditions I . „ . . _ „ 

A3 A4 —B2 
' P 

(°o) 
Remark 6 These quadratic programming problems are equivalent to solving 
the Kuhn-Tucker conditions as the systems of linear equations with sparse ma­
trix. 

2.6 Numerical examples 

The algorithms in sections 2.3 (Alg. 2.3) and 2.5 (Alg. 2.5) were realized in 
MATLAB. Both algorithms give identical results. 

Example 1 The smoothed values are obtained as sum of mean values of func­
tion f(x) and randomly (with uniform distribution) generated error values. This 
values are smoothed for different parameters a. 

(a) Natural smoothing spline: 
function f(x) = 3#2 exp~x, knot sequence x = [-1 : 0.1 : 4] (see Fig. 1). 

(b) Periodic smoothing spline: 
function f(x) = sin(27r.z), knot sequence x = [0 : 0.02 : 1] (see Fig. 2). 
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(c) Complete smoothing spline: 
function f(x) = (x2 — 25)2/100, knot sequence x — [—5 : 0.1 : 5] (see 
Fig. 3). 

-1 -0.5 

Figure 1: Natural quartic smoothing splines for a = 0.05 (dotted), a = 20 
(dashdot), a = 1J£6 (solid) and original function (dashed). 

-1.5 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 2: Periodic quartic smoothing splines for a = 5 (dotted), a = 100 
(dashdot), a = 1E9 (solid) and original function (dashed). 
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Figure 3: Complete quartic smoothing splines for a = 0.005 (dotted), a = 20 
(dashdot), a = 1E6 (solid) and original function (dashed). 

Example 2 This example gives a comparison of "computing time" (measured 
by Matlab function cputime) with respect to density of knot sequence (Ax). 
The function is identical as in example La and a = 1000 is used. The results 
are summarized in following table: 

n 10 20 50 100 200 500 1000 
alg. 2.3 0.22 0.5 4.28 32.69 270.62 - -
alg. 2.5 0.44 0.6 1.1 2.25 5.38 28.56 39.27 
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