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Abstract 

The concept of filter in implication algebra is characterized in term 
operations and also in lattice operation. The set of all filters of an im­
plication algebra forms a complete lattice whose boolean elements are 
annihilators. The set of all annihilators forms a Boolean algebra. 
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The concept of implication algebra was introduced by J, C . Abbott [1], see 
also W. C. Nemitz [4]. A groupoid (A, •) is an implication algebra if it satisfies 
the following identities: 

(i) (ab)a = a (contraction) 
(ІІ) (ab)b = (ba) a (quasi-commutativity) 
(ІІІ) a (6c) = 6 (ac) (exchange). 

Hence, the class of all implication algebras forms a variety. 
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The study of implication algebras was motivated by the fact that for every 
Boolean algebra B = (B; V, A/ , 0,1), the groupoid (B, —>) where a —> 6 = a' V6 
is an implication algebra. Hence, implication algebras describe properties of the 
connective implication in logic (not necessary in a classical logic). 

The following concepts was introduced by J. C. Abbott [1]: 

Defini t ion 1 A nonvoid subset I of an implication algebra A = (A, •) is called 
a filter if for each 6i, 62, 6 £ I and every x £ A we have 

(a) xb £ I and 
(b) whenever 6i A 62 exists in A then 6i A 62 £ / . 

We must explain the symbol A in Definition 1. For this, let us repeat some 
necessary results of [1]: 

L e m m a 1 Let A = (A,-) be an implication algebra. Then 

(i) for any a,b £ A, aa = 66. i.e. there exists a nullary term denoted by 1 
such that a • a = 1 is the identity of A; 

(ii) for each a £ A, 1 • a = a. a • 1 = 1. 

Let us introduce the relation < by setting a < 6 if and only if a • 6 = 1. 

L e m m a 2 Let A = (A, •) be an implication algebra. Then (A, <) is a V semi-
lattice with respect to < with the greatest element 1, where 

a\/b = (ab) 6. 

If for a,b £ A there exists p £ A such that p < a, p < 6 then there exists an 
infimum a Ab (w.r.t. <) and a A 6 = (a(b • p))p. 

For the proof, see Theorems 3, 4 and 5 in [1]. 

From this point of view, the definition of filter of implication algebra need not 
be suitable in all cases since the condition (a) is formulated in term operation of 
A = (A,-) but (b) contains a partial operation A which is not a term operation 
of A. To avoid this discrepancy, we prove the following: 

T h e o r e m 1 A nonvoid subset I of an implication algebra A = (A, •) is a filter 
if and only if for each a £ A and every b, b\, b2 £ I we have 

(a) ab £ I and (c) (6i (62a)) a £ I. 

P roof Let 0 7̂  I C A. Suppose that (a), (c) hold. Let 6i,62 £ I and 6i A 62 

exist. Denote by p = b\ A 62. By Lemma 2, 6i A 62 = (6i(62p))p which belongs 
to I by (c). Hence, 6i A 62 £ I proving (b), i.e. I is a filter of A. 

Conversely, let I be a filter of A. By Theorem 10 [1], I is a kernel of some 
congruence 6i on A, i.e. 6 £ I if and only if (6,1) £ #/. Suppose a £ A, b%, 62 £ 
L Then (a, a) £ 6i and (6i, 1) £ 9j, (62,1) £ #r whence by Lemma 1: 

<(6i (62a)) a, 1) = ((bt (b2a)) a, (1 (la)) a) £ 9j 

i.e. (6i (62a)) a £ I. Thus I satisfies (a) and (c) of Theorem 1. • 
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Corollary 1 The set FilA of all filters on an implication algebra A forms a 
complete lattice with respect to set inclusion. The least element is {!}, the great­
est element is A and the operation meet in FilA coincides with set-theoretical 
intersection. 

Proof It is almost trivial to show that if S is system of filters of A then also 
its intersection satisfies (a), (c) of Theorem 1. • 

Applying the foregoing Corollary 1 we see that for any subset M of A = (A, *) 
there exists the least filter of A containing M, the so called filter generated by 
M. It will be denoted by F(M). If M = {bt} (a singleton), F({6}) will be 
denoted briefly by F(b) and it will be called a principal filter generated by b. 

Theorem 2 Let A = (A, •) be an implication algebra and b £ A. Then 

F(bt) = {x£A; b<x}. 

Proof Let a £ A, 60,61,62 C F(b). Since 6 < 60 < G6Q then also aftn £ F(b). 
Moreover, 6 < 61, 6 < 62 imply by Lemma 2 that 61 A 62 exists. Since 6 < 61 A 62 
we conclude 61 A 62 £ F(6), i.e. F(6) is a filter of A containing 6. 

Conversely, let F £ Fil A and 6 £ F. Let c £ A and 6 < c. Then 6 • c = 1 
and, by Lemma 1, 6(6c) = 6-1 = 1. Applying Theorem 1 we conclude c = 1 -c = 
(6(6c) )c£F , i.e. F(6)CF. • 

Denote by Vp the operation of join in the lattice Fil A. 

Theorem 3 Let A = (A, •) be an implication algebra and MCA. Then 

F(M) = V F { F ( 6 ) ; 6 £ M } . 

Proof Of course, for each 6 £ M we have F(6) C F(M) whence \Zp{F(b);b E 
M} C F(M). On the other hand, Vj^{F(6);6 £ M } is a filter of A containing 
each 6 £ M and F(M) is the least filter of this property thus also the converse 
inclusion holds. • 

Let M be a nonvoid subset of an implication algebra A. Introduce the 
following operator which assigns to M all meets of elements of M provided they 
exist. Set M0 = M and for k = 0 ,1 , 2 , . . . 

M/i.4.1 = {p A q\ p, q £ Mk and p A q exists}. 

Since p Aq exists for p = q, the sets Mo, Mi, M 2 , . . . form a sequence 

M0 C Mi C M2 C . . . 

Now put 
M = u{M*;k = 0 , l , 2 , . . . } . 

The following results are easy consequences: 

Corollary 2 Let A = (A, •) be an implication algebra and MCA. Then 

F(M) = {x £ A] m < x for some m £ M } . 
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Corollary 3 Let A = (A, ) be an implication algebra and I, J £ FilA. Then 

I VF J = F(IUJ). 

Surprisingly the previous results enable us to characterize filters of implica­
tion algebras in purely lattice terms: 

Theorem 4 Let A = (A, •) be an implication algebra and I C A be nonvoid. 
Then I is a filter of A if and only if for each 6,61,62 £ I and each a £ A we 
have: 

(b) if 61 A 62 exists then 61 A 62 £ I; 
(d) ifb<a then a £ I. 

Proof Let I satisfies (b), (d) of Theorem 4. For 6 £ I and a £ A we have 
b < ab thus (d) implies ab £ I proving (a) of Definition 1. Hence, I is a filter 
of A. The converse follows directly by Corollary 2 in account of I = F(I) (for 
6 = 6 1 = 6 2 ) . • 

Introduce one more concept connected with filters in implication algebra, 
which was investigated for lattices by B.A. Davey and J. Nieminen in [2], [3]: 

Definition 2 Let A = (A, •) be an implication algebra and 0 ^ M C A By an 
annihilator induced by M is meant the set 

Ma = {x £ A; x V y = 1 for each y £ M } . 

Remark 1 It is easy to see that for each 0 7-. M C A we have Ma = F(M)a. 
Hence, we will investigate only annihilators induced by filters in the sequel. 

Theorem 5 For every filter I of an implication algebra . the induced annihi­
lator Ia is a filter of A. 

Proof Let 6,61,62 £ Ia and x £ A. Then 6 V y = 1 for each y £ I and, since 
6 < xb, we have 1 = 6 Vy < xbVy, whence xbVy = 1 proving xb £ Ia. If 61 A62 
exists in A then, by Theorem 9 [1]: 

(61 A 62) V y = (6X V y) A (62 V y) = 1 A 1 = 1 

proving 61 A 62 £ Ia. Hence, Ia is a filter of A. O 

Theorem 6 For each filter I of an implication algebra A, the induced anmhi-
lator Ia is a pseudocomplement in the lattice FilA. 

Proof If z £ I H Ia then z V z = z = 1 whence I D Ia = {1}. Conversely, let 
F be such a filter that I O F = {1}. Then for every i £ I and z £ F we have 
i V ^ € / n F - z {1}, i.e. * V « = 1. Hence, F C Ia. D 

Theorem 7 The se£ Anrz(^4) O/a/ annihilators induced by all filters of A forms 
a Boolean algebra with respect to set inclusion, {1} is the least and A the greatest 
element ofAnn(A), its complement is Bl = Ba. For I7 £ FilA (7 £ T) uje have 

(v{/7;7er})a = n{/7
a;7er} 

which is the operation meet in Ann (A). 
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Proof An element I of the pseudocomplemented lattice Fit A (see Theorem 
6) is called boolean if (Ia)a = I. It is clear that every annihilator is a boolean 
element of FilA. Conversely, if G G FilA is a boolean element then G = (Ga)a 

is an annihilator. Hence, the set of all boolean elements of FilA is exactly the 
set Ann(A). Of course, by Glivenko theorem, Ann(A) is a Boolean algebra 
whose induced order is set inclusion. 

Further, it is evident that for I7 G FilA (7 G T) we have 

(v{/ 7 ; 7 €r}) a cn{/« ;7€r} . 

Conversely, suppose z G fl{I^; 7 G T}. Hence z V y = 1 for every y G 
U{I7 ;7 G T}. By Corollary 2, V{I7; 7 € T} = {x 6 A; m < x for some m € M} 
where 

M = M0 = U { I 7 ; 7 € r } 
Mk+i = {p A q; p,q G Mk and p A q exists} 
M = U{Mk;k = 0 , 1 , 2 , . . . } . 
We prove by induction that z V x = 1 for each x G V {I7; 7 G F}. 
If k = 0 and x > m for some m G M then m £ I7 for some 7 G F and hence 

z V x > zV m = 1 proving 2 V £ = 1. 
Suppose now that for each x <E {a € A;m < a for some m G M^} we have 

zV x = 1. Let x1 >p Aq for p, # G Af*. Then z V p = z \/ q = 1 which yields 
#' V z > (pAq)V z = (p V z) A (<? V z) = 1 A 1 = 1 by Theorem 9 {1}, i.e. 
x'\Jz = \. a 

Concluding remark Let b be an element of an implication algebra A = (A, •). 
As it was shown, for an annihilator induced by the principal filter I (b) we have 
I(6)a = {b}a whence I (b)a = {x G A; x V b = 1}. It is the annihilator denoted 
by (6,1) in the sense of [2], [3]. 
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