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Abstract 
It is shown that from the fact that the unique solution of homogeneous 

problem is the trivial one it follows the existence of solution of nonhomo-
geneous problem in the Colombeau algebra. 
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1 Introduction 
We consider the following problem 

n 

(1.0) 4 ( 0 = S^i(«)a?i(*)+ /*(*) 

(1-1) Lk(xk) = dk, dke% fc = l , . . . , n ; 

where Akj,fk and xk are elements of the Colombeau algebra £()R); d i , . . . , dn 

are known elements of the Colombeau algebra R od generalized real numbers 
and Lk are operations on £(R) (see [1], [2]), the multiplication, the sum, the 
derivative and the equality is meant in the Colombeau algebra sense. We prove 
theorems on existence and uniqueness of solutions of problem (l .O)-(l.l). Our 
theorems generalize some results given in [14], [15] and [17]—[18]. 

oc; 
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2 Notation 

Let V(M) be the set of all C°° functions E -> E with compact support. For 
q = 1, 2 , . . . we denote by Aq the set of all functions cp G V(R) such that the 
relations 

/

oo /*oo 

tp(t)dt = 1, / tkif{t)dt = 0, 1 < fc < 9 
-oo J—oo 

hold. 
Next, £[E] is the set of all functions R : A\ x E -r E such that R(y,t) G 

C°°(E) for each fixed ^ 4 
If I2 G £[E], then DkR((p,t) for any fixed </? denotes a differential operator 

in * (i.e. DkR(tp,t) = j^(R(p,t)) for fc > 1 and D0R(y,t) = R(ip,t)). 
For given </? G 2)(E) and e > 0, we define ^ by 

(2-2) Ve(*) - ^ ( j 

An element R of £[E] is moderate if for every compact set K of E and every 
differential operator Dk there is N G N such that there are c > 0 and 6Q > 0 
such that 

(2.3) sup\DkR(p£,t)\ <ce~N for 0 < e < e0. 
teK 

We denote by £ M [ E ] the set of all moderate elements of £[R]. 
By T we denote the set of all increasing functions a from N into E + such 

that a(q) —» oo if q —r oo. 
We define an ideal yV[E] in <?M[E] as follows: R G «lV[E] if for every compact 

set K of E and every differential operator Dk there are N G N and a G T such 
that the following conditions holds: for every q > N and (f G Aq there are c > 0 
and e0 > 0 such that 

(2.4) sup 1.0*72(^,01 < c e a ( 9 ) - N if 0 < e < e0. 
teK 

The algebra (5(E) (the Colombeau algebra) is defined as quotient algebra of 
£M[E] with respect to Af[R] (see [1]). 

We denote by £0 the set of all functions from A\ into E . Next, we denote 
by £M the set of all the so-called moderate elements of £0 defined by 

(2.5) £M - {R € £o: there is N G N such that for every cp G AN there are 
c > 0 and rl0 such that \R((fe)\ < ce~N if 0 < e < rj0}. 

Further, we define an ideal J\f of £M by 

(2.6) M = {R G £0: there are TV G N and a G .T such that for every q > N and 
y> G ̂  there are c > 0, rl0 > 0 such that \R{(pe)\ < cea^~N if 0 < e < TJ0}. 
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We define an algebra R by setting 

R = - ^ - (see[lj). 

It is known that R is not a field. 
If R G £ M M 1s a representative of G G £(R), then for a fixed t the map 

Y : ip -> R(<P,t) G R is defined on A\ and Y G ^M- The class of Y in R 
depends only on G and £. This class is denoted by G(t) and is called the value 
of generalized function G at the point t (see [1]). 

We say that G G G(M) is a constant generalized function on R if it admits 
a representative R((p, t) which is independent of t G R. With any Z G R we 
associate a constant generalized function which admits i?(<£>, t) = Z((p) as its 
representation, provided we denote by Z a representative of Z (see [1]). 

(Throughout in the paper K denotes a compact interval in R containing 
zero.) We denote by 

RAkj((p,t), Rfk(ip,t), RX0j((p), RXjito)(<p), RXj(<p,t) and Rx*.(<p,t) 

representative of elements Ak5, fk, #oj > #oj (*o)> #j and a;̂  for fc, j == 1 , . . . , n. Let 

A(«) = (Afcj(t)), f(t) = (Mt), ..., fn(t)f, X(t) = (Xl (t), ..., Xr(t)f, 

x'(t) = (x'1(t),...,x'n(t)f, X0 = (Xl0,...,Xn0f, 

where T denotes the transpose. We put 

RA(<P,t) = (RAkj(<p,t)), Rf(<p,t) = (Rfl(^t),...,Rfn(ip,t)f, 

Rx(<p,t) = (Rxx(<p,t),... ,RXn(v,t)f, 

RA<P,t) = (Rx.i(<p,t),...,,Rx.n(<p,t))r, 

Rx0(<p) = (RxM,---,R*no(<p))T, 

RX(t0)(<p) = (Rx1{to)(tP)^--^Xn(t0)(f)f, 

I RA(tp,s)ds= I I RAk} (tp, s)ds J, 

/ Rf(<p,s)ds=l / Rfl(<p,s)ds,...l Rfn(<p,s)ds 

•''o \ J t0 J to 
n n 

||B.4(¥>,t)ll= Y, \R^j(^t)\, \\RA(<P,t)\\K = Y sup\RAh.(<p,t)\, 
kj=i kJ=1 teK 

n 

ll-*/(v>Olk = £suPl-*/,(p,0|. 
j=iteh 

T 
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If 
AkjJjcGW, u = (u1,...,un)eWn, » = (i)i t i n ) 6 B n , 

akj,bj G N[E]; Tnkj,pj G N, q, G E, r,- G E 

for k,j = 1 , . . . , n, then we write 

A = (Akj) € <?"X"(E), / = (h,-..,fn)
T G S"(E), 

6 = (h,...,bn)
T G Nn[E], a = (akj) G N"X"[E], 

m = (mfej) G N"x", p = (pi, • •. ,Pn)T € Nn, 

9 = (<ft, • • •, qn)
T G E n , r = ( n , . . . , r n ) T € I " , 

fl^(</>,*) G ̂ x n [ E ] , i ^ f o i ) G £&[R] 

and (u, v) = 5Z ujvj-

We say that x = ( x i , . . . , x n ) T G <5n(R) is a solution of system (1.0) if there 
is T) G ATn[E] such that it holds 

Rx>(<p,t) = RA(ip,t)Rx(ip,t) + Rf(ip,t)+r)(ip,t) 

for all ip € Ai and t G l , where i?x denotes an arbitrary representative of x. 

3 The main results 

First we shall introduce four hypotheses. 

Hypothesis H\ 

(3.1) AeQnxn(R), / G £ ( R ) , 

the matrix A admits a representative RA(<p, t) = (RAkj (<£, t)) with the following 
property: for every compact interval K there is N £ N such that for every 
(p G AN there are constants c > 0, eo > 0 and 70 > 0 satisfying at least one of 
the following four conditions: 

11 rl 

(3.2) / \RAkj((p€,s)\ds <c for 0 <e < £0 and k,j = l , . . . , n ; 
"Jo K 

(3.3) (uT , -R^OrWH -̂  7o(u,u) for 0 < e < e0, t G K and u G Rn , 

(3-4) #Afc,(<fW) = -RAjk(<fe,t) for * = 2 , . . . , n , t G # and 0 < e < £0; 

(3.5) - R ^ t a , * ) >7o for 0<e < £0, *G K and j = l , . . . , n ; 
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the matrix A admits a representative RA(<P, t) = (RAkJ (<P, t)) with the following 
property: for a fixed compact interval [a, 6] there is N G N such that for every 
(p G AN there are constants so > 0 and 7 > 0 such that 

(3.6) ^, : - ^ / \RAkM^)\dt<\-l forO<£<£0. 
* J = i J a 

Hypothesis H2 

(3.7) P , ? , r€L / o c (R) , 

(3.8) p G LL(R) , / |p(*)|dt < ^ ~ , a, 6 G R, a < b, 
•Ia 0 a 

(3.9) p . g € L j o c ( R ) , y (|p(t)| + |g(t)l)dt< h_lb + ^ a ,bGR, a < b , 

(3.10) p G L/
1

0C(R), p is an cj-periodic function such that 

P(t) ± 0, rP(t)dt > 0, r \P(t)\dt < - , 
Jo Jo w 

the elements p ,gG £/(R) admit representatives Rp((p,t) and Rq((p,t) with the 
following properties: for every compact interval K there is N G N such that for 
every <p G AN there are constants c > 0 and £0 > 0 such that 

(3.2)' / \Rp(ipe,s)\ds < c , 11/ | i? g (^ ,s ) |ds 
Jo 1^ "Jo 

for 0 < e < £0, the elements p,q € <?(R) admit representatives Rp((p,t) and 
Rq((p,t) with the following properties: for a fixed compact interval [a, 6] there 
is jV G N such that for every <p G AN there are constants 7 > 0 and £0 > 0 
satisfying at least one of the following two conditions: 

(3.11) / \RP(<p£,t)\dt<-5—->r f o r 0 < £ < £ 0 , 
J a 0 - a 

(3.12) / \Rp(<pe,t)\dt+ [ \Rq(<p£,t)\dt< • 4 - 7 f o r 0 < e < 6 0 , 
Ja 7a D - a + 4 

the element p G (5(R) admits an o;-periodic representative Rp((p,t) with the 
following property: there is TV G N such that for every (p G AN t;here are 
constants £0 > 0, 7 > 0 satisfying at leasi; one of the following four conditions: 

(3.13) flp(¥>*,*)<-7 f o r 0 < e < £ 0 and* G R; 
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(3-13)' RP(es,t) < 0 for 0 < e < e0 and t € R; 

(3-14) .#-.(¥>-,*), > 7 for 0 < e < e0 and t € R; 

(3-15) / | i ? p ( ^ , 0 | ^ < - - 7 , for 0 <£<£„• 
JO U) 

Hypothesis Hs 

Li (i = 1, • • •, n) are operations such that: 

(3.16) L ; ( y ) e R fo ryG£(R) and L{(y) e R for y G C°°(R), 

(3-17) Li(Aiyi + A2y2) = AiLi(yi) + \2Li(y2), 

where yi,y2 G £(R) and Ax, A2 are constant generalized functions on R, 

(3.18) M ^ ) : = i i ( - « y ( ^ * ) ) € f A f 

for all <p e Ai andy £ Q(R) such that Ry(<p,t) G £ M [ R ] , 

(3.19) ^i[-«y(^*)] = [^-«y(^*)] f o r a l l y G a ( R ) , 

(3.20) Li[l] = 1, 

if the matrix A G £n x n(R) has property (3.2) and if x G £n(R), then there is a 
compact interval [a, b] and iV G N such that for every <p G ,4/v there are £o > 0 
and 7 > 0 such that the relations (3.6) and 
(3-21) 

LiU RAkj(Ve,s)RXj(ip£,s)ds)\< ( j \RAkj{<Pe,t)\dt)\\Rx.{ve,t)\\[aM 

are valid for all i,j,k= 1,2,..., n and e € (0, so)-

Hypothesis H4 

Lj have properties (3.16)-(3.19) for i = 1,... ,n; 
Lj (i = 1, . . . , n) are operations such that: 

(3.16)' £.(!/)€ R foryGO(R), 

(3.17)' Li(Ai!/i + A22/2) = AiLid/i) + A2L.(ife), 

where Ai,A2 € E and 2/1,2/2 € O(R), 

(3.18)' Uy) = Li(y) foryeO0 "^'R), 
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if Ve G C°°(R) and ye => y as e -> 0 (almost uniformly), then 

(3.19)' Li(ye) -)• ^ ( y ) . 

Now we shall give theorems on the existence of the solution of problem 
(1.0)—(1.1). Apart from problem (1.0)—(1.1) we shall consider the homogeneous 
problem 

(3.22) x'k(t) = Y,Akj(t)Xj(t), 

(3.23) Lk(xk) = Q, fc = l , . . . , n . 

Theorem 3.1 We assume conditions (3.1)-(3.2), (3.16)-(3.18). Moreover, we 
assume that the trivial solution is the unique solution of problem (3.22)-(3.23) 
in £?n(R). Then problem (1.0)—(1.1) has exactly one solution in (?n(R). 

Remark 3.1 If A and / have properties (3.1)-(3.2), then the problem 

(3.24) x'(t) = A(t)x(t) + f(t), 

(3.25) x(t0) = жo, t0 Є R, x0 Є 
T^Гn 

has exactly one solution x G <?n(R) (see [13]). Besides every solution x G <?n(R) 
of equation (3.24) has a representation 

(3.26) x(t) = Z(t)c + Q(t), 

where Z(t) = (zij(t)) is a solution of the problem 

(3.27) Z'(t) = A(t)Z(t), Z(t0) = J, t0e R, 

c = ( c i , . . . , c n ) T , Ci are generalized constants functions on R for i = 1, . . . , n, 
J denotes the identity matrix and Q is a particular solution of system (3.24). 
The solution x is the class of solutions of the problem 

(3.28) x'(t) = RA(<P,t)x(t)+Rf((p,t) 

(3.29) x(t0) = RxM> veA (see [13]). 

Remark 3.2 Let x = (xu ... , x n ) T G £n(R) and let 

L\(xi) = x'i(a), L2i(xt) = Xi(b) - Xi(a), L](xi) = Xi(U), 

where a, 6, U G R, i = 1 , . . . ,n. Then the operations L\. L'j, L\ have properties 
(3.16)-(3.19). The operations L? have not properties (3.20). 

If a?i G Cl(R) and if FJ(^) = .^(a), then F/ have properties (3.16)'-(3.18)', 
and Li have not property (3.19)' in general. 
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Proof of Theorem 3.1 To this purpose we consider the following systems of 
equations 

(3.30) Hc = b 

and 

(3.31) Hc = 0, 

where 

(3.32) H = (Hij), Hij=Li(zij), b = (bu ... ,b n ) T , 

bt = Li(Qi), Q = ( Q i , . . . , Q n ) T ; i,j = l , . . . , n 

and Z, Q have properties (3.26)-(3.27). From assumptions of Theorem 3.1 and 
from [16] we infer that det H is an invertible element of R. This proves the 
Theorem 3.1. • 

Theorem 3.2 We assume that 

(3.33) all the assumptions of Theorem 3.1 are satisfied, 

x((p£,t) is a solution of the problem 

(3.34) x'(t) = RA((p£,t)x(t)+Rf((p£,t), 

(3.35) Li(xi((p£,t)) = Rdi((p£), ipeAN, i = l , . . . , n 

(for sufficiently large N and for small e > 0). 
Then 

(3.36) x((p, t) e £M[R] and x = [x((p, t)] 

is a solution of problem (1.0)—(1.1) (weputx((p£,t) = 0 ifx((p£,t) is not solution 
of problem (3.34)-(3.35);. 

Proof First we examine the problems 

(3.37) Z'(t) = RA((p£,t)Z(t), Z(t0) = I, t0eR. 

Let Rz&e^t) be a solution of problem (3.37). Then every solution x((Pe,t) of 
equation (3.34) has the representation 

(3.38) x(<pe,t) = Rz(<Pe,t)c(<pe)+Q(<pe,t), 

where 

(3.39) Q(<Pe,t) = Rz(<Pe,t) I (Rz((pe,s))~lRf(v£,s)ds. 
Jo 
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Now we consider equation (3.34) with the conditions 

(3.40) Li(x, (ip£,t)) = Rdi&e), i = l , . . . , n . 

By (3.34), (3.38) and (3.40) we obtain the systems of equations 

(3.41) H(<pe)c(<Pe) = b(<pe), 

where 

H(<Pe) = (Hij((p£)), Hij(LpE) = Li(zij(ip£,t)), 

(Zij(ipe,t)) = RZ(<pE,t), bi(lp£) = Rdi(<Pe) ~ Li(Qi(ip£,t)), 

(3.42) b(tpe) = (bl(tpe),...,bn(<pe))
T, 

Q(<Pe,t) = (Ql(Ve,t), . . . ,Qn(^e,t))T, 
c(<Ar) = ( c i ( ^ ) , . . . , c n ( < ^ f ) ) T ; i,j = l , . . . , n . 

Taking into account relations (3.38)-(3.42), assumptions of Theorem 3.2 and 
Theorem from [16] we conclude that there is N G N such that for every ip G AN 
there are c > 0, e0 > 0 such that 

(3.43) \det H(ip£)\ > csN for 0 < e < e0. 

Using (3.38)- (3.43) we deduce that problem (3.34)-(3.35) has exactly one so­
lution x((p£,t) (for cp G Aq, q > N and 0 < £ < e0). By (3.41)-(3.43) we 
get 

(3-44) c(<pe) = H-l{<Pe)K<Pe) 

(for (p G AN and 0 < e < e0). The last equalities, Remark 3.1 and relations 
(3.16)-(3.19) yield (we put a(ip£) = 0 and x(ip£,t) = 0 if det H(<pe) = 0). 

(3.45) Ci(ip) € £M for i = 1 , . . . , n. 

Since 

(3.46) Rz(<p,t) e £n
M

xnm, (Rzi^t))-1 e €n
M

xn[R], 

therefore 

(3.47) x(v,t)e£M[U] 

which completes the proof of Theorem 3.2. • 

Remark 3.3 We assume conditions (3.1)-(3.2) and Lk(xk) — Xk(a), a G M, 
i = 1 , . . . ,n. Then problem (3.22)-(3.23) has only the trivial solution in Qn(R) 
(see [13]). 
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Remark 3.4 We assume that the matrix A admits an c-j-periodic representative 
RA(y,t) = (RAki(ip,t)) satisfying conditions (3.1)-(3.3). Then system (3.22) 
has only the trivial cO-periodic solution in £n(R) (see [17]). 

Remark 3.5 We assume that the matrix A has an cO-periodic representative 
RA(ip<>t) = (RAki(<P,t)) satisfying conditions (3.4)-(3.5). Then system (3.22) 
has only the trivial cO-periodic solution in £/n(R) (see [17]). 

Remark 3.6 If the element p admits an cO-periodic representative Rp(<p, t) sat­
isfying conditions (3.2) and (3.13), then x = 0 is the unique cO-periodic solution 
of the equation 

(3.48) x"(t)+p(t)x(t) =0 

in £(R) (see [15]). 

Remark 3.7 If the element p admits an cO-periodic representative Rp(^p, t) sat­
isfying conditions (3.2)' and (3.14)-(3.15), then x = 0 is the unique cO-periodic 
solution of equation (3.48) in £(R) (see [15]). 

Remark 3.8 If conditions (3.10) are satisfied, then x = 0 is the unique 
cO-periodic solution of equation (3.48) in the Caratheodory sense (see [11]). 

Remark 3.9 If conditions (3.8) are satisfied, then the problem 

(3.49) x"(t) + p(t)x(t) = 0, x(a) = x(b) = 0, a ̂  6, a, b G R 

has only the trivial solution in the Caratheodory sense (see [3]). 
If p and q have properties (3.9), then the problem 

(3.50) x"(t) + p(t)x'(t) + q(t)x(t) = 0, x(a) = x(b) = 0 , a ̂  6, a, 6 G R 

has only the trivial solution in the Caratheodory sense (see [4]). 

Remark 3.10 If the element p admits a representative fulfilled conditions (3.2)'-
(3.11), then problem (3.49) has only the trivial solution in Q(R) (see [14]). 

If elements p and q admit representatives Rp(ip,t) and Rq(ip,t) satisfying 
conditions (3.2)'; (3.12), then problem (3.5) has only the trivial solution in 
G(R) (see [14]). 

Theorem 3.3 We assume that the element p G G(R) admits a representative 
Rp(ip,t) satisfying conditions (3.2);; (3.13)'. Then problem (3.49) has only the 
trivial solution in (?(R). 

Proof Let x be a nontrivial solution of problem (3.49) in (?(R)- Then 

(3.51) Rx»(v>e,t) + Rp(ip£,t)Rx(<p£,t) =ri(<pe,t), 
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where 

(3.52) r)(<p,t) G Af[R], Rx(<p,a) G .V, Rx(<p,b) G N. 

Hence we get 
rb rb 

(3.53) I Rx„(<Pe,t)Rx(<p£,t)dt+ / Rp(<Pe,t)R2
x(<Pe,t)dt = T)(<p£), 

J a J a 

where rj(<p) = Ja r)(<p,t)Rx(<p,t)dt G N. 
Taking into account (3.31)-(3.53) we infer that 

(3.54) 
rb rb 

(Rx'(Ve,t)Rx(<p£,t))\
b
a- R2

x,(<pe,t)dt+ \ Rp(<pe ,t)R
2

x(<p£,t)dt = fj(<pe). 
J a J a 

Since 

(3.55) Rx,(<p,b)Rx(<p,b) € N, Rx,(<p,e)Rx(<p,a) € jV, 

therefore 
, 6 

(3.56) / (R2
x,(<p£,t)-Rp(<p£,t)R

2
x(<p£,t))dt = r,*(<p£), 

J a 

(3.57) ( R2
x,(<pe,t)dteX (by (3.13)') 

J a 

and 

(3.58) Rx(<p£,t) = I Rx,(<p£,s)ds + Rx(<p£,a), 
J a 

where rj*(<p) G .jV. Conditions (3.57)-(3.58) and the Schwarz inequality imply 

(3.59) | | I ? * ( > , , 0 l l [ a , 6 ] < ^ > - ^ 

where ip G Aq, q > N0 and 0 < e < e0. On the other hand we have 

foan\ Rx(<Pe,t) = - / (t-s)(Rp(<Pe,s)Rx(<peis)-T)(<pe,s))ds 
(3.60) Ja 

+ Rx(<pe,a) + Rx,(<p£,a)(t-a). 

Consequently (putting t = 6) 

(3.61) Rx,(<p£,a)eN 

and (using the Gronwall inequality) 

(3.62) \\DrRx(<pe,t)\\K < cre
a^~N' 

for q > Nr, <p G Aq and 0 < e < e. Thus 

(3.63) Rx(<p,t) e Af[R] 

which completes the proof of Theorem 3.3. • 
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T h e o r e m 3.4 We assume conditions (3.1)-(3.2), (3.16)-(3.21). Then x = 
(0 , . . . , 0 ) T is the unique solution of problem (3.22)-(3.23) in Gn(R). 

Proof If x — (xi,..., xn)
T e Gn(R) is a nontrivial solution of problem (3.22)-

(3.23), then 

(3.64) Rx,(<p,t) = RA(<p,t)Rx(<p,t) + r)(<p,t) 

and 

(3.65) Li(xi(<p,t)) = neM, 

where r\ £ jVn[K], i = 1 , . . . , n and Rx is a representative of x. By (3.64)-(3.65) 
and (3.16)-(3.21) we get 

(3.66) RXk(<p£,t) = ] T ( / RAkj(<Pe,s)RXj(<pe,s))ds 

+ r]k(<p£,s)ds+rk-Y^Li[ RAkj(iPe,s)Rxj((peiS)ds)-Li( rjk(<p£,s)d, 

Applying (3.20)-(3.21) and (3.66) we have 

n rt 
(3.67) \RXk(<p£,t)\ < ] T / \RAkj(<Pe,t)RXj(<p£,t)\dt 

j = l J a 

rt n pb 

+ ^kiVe^dt + ^ + Y^WRxiiVeMlaM / \RAhi(<Pe,t)\dt. 
Ja j=i Ja 

Hence 

(3.68) \\Rx(<p£,t)\\[aM < 2\\Rx(<p£,t)\\[aM(3£ + rj(<p£), 

where fj(<p) e Af. Thus 

(3.69) IIRx(^,*)ll[«,6](l - 2/8.) < cea{q)-N 

Using (3.6) we obtain 

(3.70) \\DrRx(p£,t)\\[aM < cra^~N' 

for <p e Aq, q > Nr and 0 < e < e. 
On the other hand 

(3.71) Rx(<p£,t) = Rx(<p£,t0)+ / RA(<pe,s)Rx(<p£,s) + rj(<p£,s)ds, 
Jt0 

where t0 e (a,b). 
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By virtue of (3.70)-(3.71) and the Gronwall inequality we get 

(3.72) \\DrRx(ipeMK<cre
a^-^ 

for q > Nr, ip £ Aq and 0 < e < e' and consequently 

(3.73) Rx(^t)eMn[R}. 

This proves the theorem . • 

4 Final remarks 

R e m a r k 4.1 Let p G L]0C(R), then we put 

/

oo 
p(t + u)ip(u)du = (p*ip)(t), 

-OO 

where p G A\. Hence p * tpe -> p in Lj0C(K) and -Rp(<p, £) has property (3.2). It 
is known that every distribution is moderate (see [1]). The problem (3.24) need 
not have a solution in Gn(R) (see [13]). Multiplication in G(R) does not coincide 
with usual multiplication of continuous function in general (see [1]). We denote 
the product in G(R) by o. If p, x G C°°(E), then the classical product px and 
the product p o x in G(R) give rise to same element of G(R) (see [1]). 

Theorem 4.1 We assume that 

(4.1) AkjJk GC°°(!R), dkeR forfe,i = l , . . . , n ; 

(4.2) 
x = - ( 0 , . . . ,0) T is the unique solution of problem (3.22)-(3.23) 
in the classical sense, 

x = (xi,... ,xn)
T is the solution of problem (l.O)-(l.l) 

in the classical sense, 
(4.3) 

x = ( x i , . . . ,afn)T G ̂ n(M) is the solution of the problem 

(4.4) x'k(t) = Y, A^j(t) o xj(t) + fk(t), 

(4.5) Lk(xk) = dk, fc = l , . . . , n ; 

(4.6) the operations Lt have properties (3.16)-(3.19). 

Then x and x give rise to the same element of <yn(K). 
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Proof Let x = [Rx(<P,t)] be a solution of problem (4.4)-(4.5). Then 

n 

(4.7) xk(t) = ^Akj(t)xj(t) + fk(t), Lk(xk)=dk, k = l,...,n 

and 

n 

(4.8) Rx-h>(<Pe,t) ^Y,Akj(t)Rx-.(<pe,t) + fk(t) + rlk(p£,t), 
3 = 1 

(4.9) Lk(x~k(<pe,t)) = djfe +fjk(<pe), fc = 1 , . . . ,n, 

where 77* € -lV[M], r/* £ -A/\ 0 < e < e0, <p € -4jv, iV sufficiently large and 
fc = 1 , . . . , n. Hence 

(4.10) Rx> (<pe, t) = A(t)Rx (<p£ ,t)-r)(<pe, t) 

(4.11) Lk(Rx(<pe,t)) = -r,*(<^), fc = l , . . . , n . 

where 

(4.12) Rx(ips,t)^x(t)-Rx(<p£,t), A(t) = (Akj(t)). 

On the other hand Rx(ip, t) has the representation (3.38), where RA(<P, t) = A(t) 
and 

(4.13) Q ( ^ , « ) = -RZ(Pe,t) f (Rz(ipe,s))-lV(<Pe,s)ds e XU[R]. 
JO 

We consider system (3.41). The relations (4.6), (4.13), (3.38), (4.10)-(4.11), 
(3.42)-(3.44) and (3.46) yield 

(4.14) c(<p) eMn 

and consequently 

(4.15) x-Rx(<p,t) eAfn[R]. 

This proves of Theorem 4.1. 
"To repair" to consistency problem for multiplication we give the definition 

introduced by J. F. Colombeau in [1]. 
An element u of Q(R) is said admit a number W 6 D'(R) as the associated 

distribution if it has a representative Ru(<p,t) with the following property; for 
every tp e V(R) there is N £ N such that for every <p G AN we have 

/

oo 

Ru(<Pe,t)ll>(t)dt = W(ll)). 
-oo 

• 
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Theorem 4.2 We assume that 

(4.17) Akj,fkeL]oc(R) f o rk , j = l , . . . , n ; 

x* = ( 0 , . . . , 0)T is the unique solution of the problem 

n 

(4.18) x'k(t) = ^2Akj(t)xj(t), Lk(xk)=0, fc = l , . . . , n 

(in the Caratheodory sense), 
x is the solution of the problem 

n 

(4.19) x'k(t) = ^2Akj(t)xj(t) + fk(t), Lk(xk) = dk, 4 e B , fc = l , . . . , n 
i=i 

(in the Caratheodory sense), 
x G Qn(M) is the solution of the problem 

n 

(4.20) x'k(t) = £ -4 f c i ( t ) oXj(t) + /,-(*), 

(4.21) Lk(xk)=dk, k = l , . . . , n ' 

(4.22) Lfc,L* have properties (3.16)-(3.19), (3.16)'-(3.19)'. 

Then xk admits associated distribution which equals xk (k = 1 , . . . , n / 

Proof follows from the facts that RAkj(ipe,t) = (Akj * <p£)(t) -r Akj(t), 
Rfk(<Pe,t) = (/* * ¥>*)(«) -> A W in LX

0C(R) (for fc,/= l , . . . , n , e -> 0) 
and the continuous dependence of x on coefficients -4fcj and fk. Indeed, let 
Rz(pe,t) = (Rzij(iPe,t)) be the solution of problem (3.37). Then we conclude 
that 

(4.23) lim RZij(ipe,t) = zij(t) 

(almost uniformly for every fixed ip € A\) and i , j = 1 , . . . ,n. By (3.19)' and 
(4.18) we have 

(4.24) lim det H(ipE) = 5 ^ 0 , g G M, 
(f-»0 

for every <p G A\ (det .£/"(<#•)) is defined by (3.42). Let Rx(ip£,t) be a solution 
of problem (3.34)-(3.35) (for small e > 0, ip G A/v and sufficiently large N). 
Relations (3.38)-(3.42), (3.34), (4.23)-(4 24), (3.16)-(3.19) yield 

(4.25) limRXk((Pe,t) = xk(t), k = l , . . . , n . 
e->0 
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(almost uniformly for every fixed ip G AN) and x = (xi,... ,xn)
T is a solution 

of problem (4.19) in the Caratheodory sense. On the other hand x = [Rx&i t)] 
is the solution of problem (4.20)-(4.21) (we put Rx((p£,t) = (0, ...,0)T if 
det H((p£) = 0). Proof of the fact is similar to the proof of Theorem 3.2, This 
proves of Theorem 4.2. - • 

Corollary 4.1 We consider the following problems 

( L(X) = *<»> (t) +p1(t)X("-1Ht) + ... +Pn(t)x(t) = p n + 1 ( t ) 

[ Li(x) = di, di G R, i = 1 , . . . , n 

and 

(4.27) L(s) = 0, L.i(rr) = 0, z = l , . . . , n ; 

where pj G (5(R) f}' = 1,..., n + 1,) and L; (i = 1 , . . . , n) have properties (3.16)-
(3.19). We assume that the matrix 

A-

/ 0 1 0 . . . 0 \ 
0 0 1 . . . 0 

\~Pn -Pn-1 -V\' 

satisfies condition (3.2) and the trivial solution is the unique solution of problem 
(4.27) in (?(R). Then problem (4.26) has exactly one solution x in <?(R). 

The proof of the fact is similar to the proof of Theorem 3.1. 

Corollary 4.2 We assume that 

(4.28) Pj eC°°(R) , di e R, j = l , . . . , n + l; t = l , . . . , n , 

(4.29) the zero function is the unique solution of problem (4.27). 

(4.30) x is the solution of problem (4.26) in the classical sense, 

x G (?(R) is the solution of the problem 

( L(X) = *(») + Pl (t) O X^~^(t) + ...+Pn(t)o X(t) = P n + i (t) 

\ Li(x) = di, 

(4.32) the operations Li (i — 1 , . . . ,n) have properties (3.16)-(3.19). 

Then x and x give rise to the same element o/^(R). 
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Corollary 4.3 We assume that 

(4.33) Pj£Llc(R), dieR; j = l,...,n + l, t = l , . . . , n ; 

Li (i = 1 , . . . ,n) are operations such that: 

(3.16)* Li(y)€R for y € C n _ 1 (R) , 

(3.17)* Li(Au/i + A2j/2) = AiA(yi) + MLi{V2), 

where \x,\2 € 1 and 1/1,1/2 € O""1 W , 

(3.19)* 
i/y<- G C°°(R). y^0 =[> y{i) as e -> 0 (almost uniformly) 

for i = 0 , 1 , . . . , n - 1, £/ien Fi(^) ~> Li(2/), 

£fte operations Li, Li have properties (3.16)-(3.19), (3.18)', 
the zero function is the unique solution of the problem 

(4.34) L(x) = 0, L i ( x ) = 0 , i = l , . . . , n 

in the Caratheodory sense, 

x is the solution of the problem 

(4.35) L(x) =pn+i(t), Li(x) = du i = l , . . . , n 

in the Caratheodory sense, 

(4.36) x G £(M) is the solution of problem (4-31). 

Then x admits an associated distribution which equals x. 

Remark 4.2 Noncontinuous solutions of ordinary differential equations can be 
considered on the other way (for example: [1], [5]-[10], [12]-[13], [19]-[22]). 

References 
[1] Colombeau, J. F.: Elementary introduction to new generalized functions. Amsterdam-

New York-Oxford-North Holland, 1985. 

[2] Colombeau, J. F.: Multiplication of distributions. Lecture Notes in Mathematics, 1532, 
1992. 

[3] Denkowski, Z.: On the boundary value problems for the ordinary differential equation of 
second order. Prace Matematyczne U. J. (Krakow) 12 (1968), 11-16. 

[4] Dlotko, T.: Application of the notation of rotation of a vector field in the theory of 
differential equations and their applications. Prace Naukowe U. SI. w Katowicach, 32 
(1971), (in Polish) 

[5] Deo, S. G., Pandit, S. G.: Differential systems involving impulses. Lecture Notes 954 
(1982). 

[6] Dolezal, V.: Dynamics of linear systems. Praha, 1964. 



112 Jan LIGQZA 

[7] Egorov, Y.: A theory of generalized functions. Uspehi Math. Nauk 455 (1990), 3-40 (in 
Russian). 

[8] Filippov, A. F.: Differential equations with discontinuous right part. Moscow, 1985, (in 
Russian). 

[9] Hildebrandt, T. H.: On systems of linear differential Stieltjes integral equations. Illinois 
Jour, of Math. 3 (1959), 352-373. 

[10] Kurzweil, J.: Generalized ordinary differential equations. Czech. Math. J. 8 (1958), 360-
389. 

[11] Lasota, A., Opial, Z.: Sur les solutions periodiques des equations differentielles ordi-
naires. Ann. Polon. Math. 16 (1964), 69-94. 

[12] Lig§za, J.: Weak solutions of ordinary differential equations. Prace Naukowe U. SI. 
w Katowicach, 842 (1986). 

[13] Ligeza, J.: Generalized solutions of boundary value problems for ordinary linear differ­
ential equations of second order in the Colombeau algebra. Different aspect of differen­
tiability, Dissertationes Mathematicae 340 (1995), 183-194. 

[14] Ligeza, J.: Generalized solutions of ordinary linear differential equations in the 
Colombeau algebra. Math. Bohemica 2 (1993), 123-146. 

[15] Ligeza, J.: Periodic solution of ordinary linear differential equations of second order 
in the Colombeau algebra. Different aspect of differentiability, Integral transforms and 
special functions 4, 1-2, 123-146. 

[16] Ligeza, J., Tvrdy, M.: On systems of linear algebraic equations in the Colombeau algebra. 
Mathematica Bohemica 124 , 1 (1999), 1-14. 

[17] Ligeza, J.: Generalized periodic solutions of ordinary linear differential equations in the 
Columbeau algebra. Annales Mathematica Silesiana, Prace Naukowe U. S. w Katowicach, 
11 (1997), 67-87. 

[18] Ligeza, J.: On some boundary value problems for ordinary linear differential equations 
of second order in the Colombeau algebra. Acta Univ. Palacki. Olomuc, Fac. rer. nat. 
35 (1996), 103-119. 

[19] Persson, J.: The Cauchy system for linear distribution differential equations. Functial 
Ekvac. 30 (1987), 162-168. 

[20] Pfaff, R.: Generalized systems of linear differential equations. Proc. of the Royal Soc. of 
Edingburgh, S. A. 89 (1981), 1-14. 

[21] Schwabik, S., Tvrdy, M., Vejvoda, O.: Differential and integral equations. Praha, 1979. 

[22] Wyderka, Z.: Some problems of optimal control for linear systems with measures as 
coefficients. Systems Science 5, 4 (1979), 425-431. 


		webmaster@dml.cz
	2012-05-03T23:10:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




