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Abstract 

Let p, q be terms of the same type r. The identity p == q is called 
normal if neither p nor q is a variable or else both p and q are the 
same variable. We describe a structure of algebras presented by normal 
identities and for algebras which have not this property we find a maximal 
subalgebra of a normally presented algebra satisfying the same identities. 
We introduce the notion of a normal congruence and we shall describe 
the lattice of all normal congruences of an algebra. Moreover, we expose 
the connection between fully invariant and normal congruences of the 
algebra of terms of a given type r and normal varieties of algebras. 

K e y w o r d s : Normal identities, normal varieties, zero-algebra, as­
signed term, unary algebra. 

1991 Mathematics Subject Classification: 08A05, 08B05, 08B10 

1 Preliminaries 
Throughout the paper we suppose t h a t r is a given similarity type containing 
at least one at least unary operation symbol. Let p , q be terms of type r . An 
identity p = q is said to be normal if neither p nor q is a variable, or else 
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both p and q are the same variable. A term p ( x i , . . . ,x n ) of type r is called 
nontrivial if it is not a single variable, otherwise it is called trivial. Mod(H) 
denotes the class of all algebras A of type r satisfying a given set E of identities 
of type r. A variety V is normally presented if V = AIod(S), where E is a 
set of identities of a given type r, containing only normal identities. Otherwise 
V is not normally presented. For an algebra A, Iri(A) denotes the set of all 
identities satisfied in A, iV(A) denotes the set of all normal identities in Id(A). 
For a variety V we denote by Id(V) and Ar(V) the set of all (normal) identities 
satisfied in V, respectively. The nilpotent shift of a variety V is the variety 
M(V) = Mod(N(V)) (cf. [7], [14]). Hence, V is normally presented iff V = 
M(V) or, equivalently, Id(V) = N(V). Such varieties were examined by several 
authors, see [5]-[15]. Some important constructions of J\f(V) can be found in 
[4], [7], [8], [15] and in the case when V is congruence distributive see also [3]. 
An algebra A is called normal if Id(A) = N(A) and non-normal otherwise. 

The aim of the paper is: 

(i) describe non-normal algebras; 

(ii) If an algebra A is notnormal and B G Af(V(A)), where V(A) is the variety 
generated by A, find a maximal subalgebra B* of B satisfying Id(A). 

In the sequel, II, 5, P shall denote the following operators on classes of 
algebras : II-taking homomorphic images of algebras, 5-taking subalgebras, 
P-taking products. For an algebra A of type r, V(A) denotes the variety (of 
type r) generated by A. 

2 Non-normal algebras 
L e m m a 2.1 Let A = (A,F) be an algebra of type r. Then Id(A) ^ N(A) 
if and only if there exists a unary nontrivial term v(x) of type r such that 
A f= v(x) =- x. 

Proof Sufficiency is obvious. 
Necessity. Let Id(A) ^ iV(A). Then A f= p ( x i , . . . ,x n ) = x^ for some n-ary 
nontrivial term p. Setting v(x) = p ( x , . . . ,x) we conclude that A |= v(x) = x. 

• 

R e m a r k 2.1 If A is non-normal, then the term v(x) of Lemma 2.1 need not be 
uniquely determined. On the other hand, if w(x) is a nontrivial term of type r 
and A |= w(x) = x then clearly A J= w(x) = v(x). Hence, v(x) is "determined 
uniquely up to an identity". It justifies to call v(x) the assigned term of A. 

E x a m p l e 2.1 If L is a lattice, one can set v(x) = x V x or v(x) = x A x. Of 
course, x V x = x = x A x i n L . If G is a group, one can set v(x) = x x _ 1 x or 
v(x) = ex, where e is the unit of G. Then G f= v(x) = x. 

An endomorphism w of an algebra A is called idempotent if wow = w in A, 
where o denotes the superposition. 
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Lemma 2.2 Let A be a non-normal algebra of type r . Then the assigned 
term v(x) corresponds to an idempotent endomorphism of every algebra B £ 
Mod(N(A)). 

Proof Of course, the identity v(x) = x implies v(v(x)) = v(x), which is a 
normal identity, i.e. it is satisfied by each B £ Mod(N(A)). 

Moreover, let f e F be n-ary. Thus v(x) = x also implies: 

v ( f ( x i , . . . , x n ) ) = f ( x i , . . . , x n ) = f (v (x i ) , . . . , v (x n ) ) . (1) 

However, such identities are normal, hence satisfied by B. Thus v(x) is an 
idempotent endomorphism of B . • 

Definition 2.1 An algebra A = (A,F) of type r is called zero-algebra (of 
type r) if there exists an element 0 E A. (so-called zero of A) such that 

f(au an) = 0 

for every / £ F with r ( / ) = n (n £ IV) and all a\,..., an £ A. 

For the role of zero-algebras in varieties and pseudovarieties (cf. [1]) see 
[8], [9]. The two-element zero-algebra of type r is denoted by 1T in [7], The 
following assertion is straightforward and hence the proof is omitted: 

Lemma 2.3 Let C = (C, F) be a zero-algebra of type T, let p , q be arbitrary 
nontrivial terms of type r . Then: 

(i) C |= p = q; 

(ii) every equivalence on C is a congruence of C; 

(Hi) if 6 £ Con(C) then C / 0 =" B £ 5(C) ; moreover if B e 5(C) then 
B =• C/O for some 0 £ Con(C); 

(iv) if | C |> 1 then C contains a two-element zero-algebra 1T. 

Applying Lemma 2.1, we conclude immediately: 

Lemma 2.4 Let A be an algebra of type r . The following conditions are equiv­
alent: 

(a) Id(A)^N(A); 

(b) Id(A) are consequences of £ U {v(x) = x} for a set £ C N(A) and for 
v(x) being an assigned term of A. 

Proof Confront the proof of Theorem 1 of [6]. • 

Theorem 2.1 Let A be an algebra of type r and Id(A) / -V(A). Let B £ 
JV(V(A)). Then B is isomorphic to a subdirect product of algebras D and C, 
where D (= v(x) = x for an assigned term v(x) of A and C is a zero-algebra 
of type r . 

Proof Confront [14] and the proof of Theorem 1 of [15]. D 
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Example 2.2 Let A = ({a, b, c} , / ) be a nonunary algebra, where / is defined 
as in Fig. 1: 

b 

Fig. 1 

Then v(c) ^ c for every nontrivial term operation v of A. Of course, Id(A) = 
TV (A) (in fact, A (= f3(x) = f(x)). A is isomorphic to a subdirect product 
of algebras D = ({z, v},f) and C = ({#,0},/) visualized in Fig. 2 and Fig. 3, 
respectively: 

Q 1 0 

* 
z 9 

Fig. 2 Fig. 3 

C is a zero-algebra, a = (2,0), 6 = (v,0), c — (z,g). One can verify: 
D |= f2(x) = x (which of course implies f3(x) = f(x)). A has no zero-algebra 
as a subalgebra but A /O is a zero-algebra, where 0 is given by the partition 
{a,6},{c}. 

Corollary 2.1 Let A be an algebra of type r . 

(a) If there exists a homomorphic image or a subalgebra of A isomorphic to 
a nontrivial zero-algebra, then Id(A) = N(A). 

(b) If there exists an element c of A which is not a result of any nontrivial 
term operation of A, then Id(A) = N(A). 

Proof A nontrivial zero-algebra does not satisfy the identity v(x) = x for 
any nontrivial unary term v(x) of A. Hence, if either a homomorphic image or 
a subalgebra of A is a nontrivial zero-algebra, then also A cannot satisfy any 
identity of the form v(x) = x for a nontrivial term v. By virtue of Lemma 2.1, 
Id(A) = N(A). 

If c G A and c is not a result of any nontrivial term operation of A, then 
the equivalence 0 given by the partition {c}, A — {c} is a congruence of A and 
A / 0 is a two-element zero-algebra (whose zero is the class A — {c} = 0). By 
the formerly proved assertion (a), Id(A) = N(A). • 
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Remark 2.2 The converse of Corollary 2.1 does not hold in general. There 
exists an algebra A with Id(A) = N(A) but A has no subalgebra and no 
homomorphic image isomorphic with a zero-algebra, moreover, every element 
of A is a result of some nontrivial operation of A. 

Example 2.3 Let A 
defined as in Fig. 4: 

({a, 6, c}, /, g) be an algebra with two unary operations 

/ : 

c ě 

9-

Fig. 4 

Then, as can be easily checked, Id(A) = N(A). Of course, A f= f3(x) = f(x), 
g 3 (x) = g(x). A has no proper subalgebra, A is not a zero-algebra and A has 
only one nontrivial congruence 0 defined by the partition {a,b}, {c}. Moreover, 
A / 0 is not a zero-algebra. 

Remark 2.3 The property Id(A) ^ N(A) is not preserved by direct products. 

Example 2.4 Let Ai = ({a, &},/,#), A 2 = ({c,d},f,g) be algebras with two 
unary operations given in Fig. 5 and Fig. 6: 

/ : 
* 6 

а а 
Лx 

Fig. 5 

/ : 

Q 
9-

Л 2 

Fig. 6 
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Then Jd(Ai) ^ iV(Ai) and Id(A2) / -V(A2) since Ai |= f2(x) = x and 
A2 \= g2(x) = x . Consider the direct product A = Ai x A 2 . Then the 
equivalence O given by the partition {(a, c)},{(a, d), (6, c), (6, rf)} is a congruence 
on A and A/O is a two-element zero-algebra. By Corollary 2.1, Id(A) = N(A). 

T h e o r e m 2.2 Let A be an algebra of type r with Id(A) ^ N(A). Let B = 
(B,F) G J\f(V(A)) and let an assigned term v of A be given. Then 
B* = {b G B : v(b) = b} is a subuniverse 0/B and: 

(a) B* = (B\F)\=Id(A); 

(b) B* is a maximal subalgebra O/B satisfying Id(A). 

Proof By Lemma 2.2, the assigned term v(x) of A is an endomorphism of B 
thus B* is a subalgebra of B. Since B G M(V(A)), we have: B* = (B*,F) \= 
N(A). By the definition of £*, also B* |= v(x) = x, thus B* f= Id(A) by 
Lemma 2.4. If D is a subalgebra of A, B* C D C B and D |= Id(A), then 
D |= v(x) = x, whence D C B*. Therefore, B* is a maximal subalgebra of B 
satisfying Id(A). D 

Remark 2.4 The subalgebra B* of B in Theorem 2.2 consists just of all results 
of all operations of all elements of B. In other words, these elements are in the 
rang of at least one nontrivial term operation of B. Of course, if b = f(bi,..., 6n) 
for some 6 i , . . . ,6n € B then, by Lemma 2.2, v(f(b\,...,6n)) = / ( b i , . . . , 6n)-
Thus beB*, 

3 Birkhoff's theorems for normal varieties 

Our aim is to present a variation of Birkhoff's type theorems for normal vari­
eties, via a suitable notion of normal congruences. 

First BirkhofFs Theorem of 1935, see [2], asserts that a set £ of identities of 
a given type r can be represented in the form E = Id(K), (i.e. is an equational 
class) if and only if E is closed under rules (l)-(5) of derivation (called Birkhoff's 
rules of derivation), [13], [18]. For a given set E of identities of type r, E(E) 
denotes the set of all consequences of the set E by means of the derivation rules. 

Second Birkhoff's Theorem [2] asserts that a nonempty class of algebras of a 
given type r is a variety (i.e. is closed under operation of passing to subalgebras, 
homomorphic images and also arbitrary direct products) if and only if it is an 
equational class. 

Our aim is to present a variation of Birkhoff's type theorems for normal 
varieties, via a suitable notion of normal congruence. 

Normal congruences are closely related with the notion of normally presented 
variety. 

Therefore we begin with the following: 

Definition 3.1 Given an algebra A = (A,F), a congruence 0 of A is called 
normal if the factor algebra A / 0 is normal or trivial. Otherwise, it is called 
non-normal. 
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Note, that a non-normal algebra A has always the trivial normal congruence 
A x A. The notion of normal congruence is eventually interesting only for non 
normal algebras. 

Theorem 3.1 The set of all normal congruences NCon(A) of an algebra A 
is a complete lattice NCon(A). It is a complete meet-subsemilattice of the 
congruences lattice Con(A). Moreover, the set of all normal congruences 
NCon(A) of an algebra A is an algebraic closure system over A x A. 

Proof Obviously the intersection of two normal congruences 0 and * in 
A is a normal congruence. The same statement can be easily proved for a 
family{©i;i G / } of normal congruences in A. Therefore NCon(A) is a com­
plete meet-subsemilattice of the lattice Con(A). Therefore the partially ordered 
set: (NCon(A),C) is a complete lattice. We will show, that the join of given 
two normal congruences O and $, in the lattice Con(A) i.e. 0 V ^ is a normal 
congruence in A. 

To show this wre shall associate with every normal congruence 0 of A the 
normal variety HSP(A/Q). This variety will be denoted by Ve- Given two 
normal congruences 0 and * in A. We will show, that: 

Ve H V* 2 Vev* • 

Namely: 

Id(Ve n V*) = E(Id(Ve) U Id(V*)) = E(Id(A/@) u Id(A/9)) 

C Id(A/(G V *)) = Id(Ve V V*). 

Similarly one can show the dual: 

Ve V VV = Ven* • 

The proof that NCon(A) is an algebraic closure system is basically those 
of Lemma 3 and Theorem 1 of [13], p. 51. Namely, it is easy to see that for a 
given directed family {©> : i G 1} of normal congruences of A: 

(J(e, : .€ / ) = \J(et : i € /). 

Therefore NCon(A) is an algebraic closure system over .4 x A. • 

Example 3.1 We can show that the inclusion V'e H Vq D Vev^ (mentioned in 
the proof of Theorem 3.1) cannot be converted in a general case. Counsider a 
two-element zero-algebra of type r : A = 1T = ({0,1},F) and its direct power 
A x A. Let 0 , <b be congruences on A x A given by their partitions 

0 : {(0,0),(0,1)},{(1,0),(1,1)} 

* : {(0,0),(1,0)},{(0,1),(1,1)}. 
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Then 0 V $ = A x A i n Con(A x A) whence Vev4> is trivial. On the other 
hand, Ve, V$ are not trivial since Ve ~ V<& — H S P ( l r ) thus also Ve H V<& is 
non-trivial, i.e. 

Vev$ C Ve n V* but Vew ^ Ve n V*. 

Theorem 3.2 The lattice NCon(A) is an algebraic lattice. 

Proof Similarly as in the proof of Theorem 10.2 [13], p. 52, for congruences, 
our proof follows from Theorem 6.5 of [13] and Theorem 3.1. • 

Given an algebra A = (_4, F ) , E(A) denotes the set of all endomorphisms 
of an algebra A. A congruence 0 G Con(A) is called fully invariant in A if 
6 G Con(A+), where A+ = (A, F U E(A)). 

Theorem 3.3 (G. Gratzer) Let F(X) denotes a free algebra with a free gen­
erating set X, let Q be a congruence ofF(X). Then the algebra F(X)/Q is a 
free algebra with the set {[x]e • x G X} of free generators if and only if 0 is 
fully invariant in F(X). 

Theorem 3.4 Let F(X) denotes a free algebra with a free generating set X, 
let 0 be a congruence ofF(X). Then the algebra F(X)/Q is either trivial or a 
normal free algebra with the set {[x]e '• x £ X} of free generators if and only if 
0 is normal and fully invariant congruence in F(X). 

Proof The proof follows from Theorem 3.3 and the fact that the algebra 
F ( X ) / 0 is either trivial or satisfies only normal identities iff 0 is normal. • 

For a given class K of algebras of type r, denote by K* the class AC U { l r } . 
From ([2], [13]) and he fact that algebra l r satisfies only normal identities, 

we conclude immediately: 

Lemma 3.1 For every class K of algebras of the same type r , all the classes: 

K\ P ( /C) , S(/C), H(K*), V(K*) 

satisfy the normal identities N(K). 

Given a class K of algebras of type r, we denote by FJC(X) the free algebra 
of K generated by the set X of free generators. 

In the sequel, a set E consisting only of normal identities will be called 
normal. 

Theorem 3.5 (First G. Birkhoff 's Theorem for normal identities) A set 
£ of identities of type r can be represented in the form: E = Id(K*) if and only 
if E is closed under the Birkhoff's rules of derivation (l)-(5) and E is normal. 
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Proof The proof is similar to that of First Birkhoff's theorem, presented in 
[12] for regular identities. The main difference is that one should concentrate 
on normal identities instead of regular. Moreover, we should notice, that for 
a given type r, the zero-algebra l r satisfies exactly all the normal identities 
of type r . Finally we can see that the consequences via the rules (l)-(5) of 
inferences of a normal set E of identities of type r is normal. • 

Theorem 3.6 Let K be a nonempty class of algebras of type r , A be an algebra 
of type T and X be a set such that \X\ > \A\. The following condition is satisfied: 

A (= Id(K*) if and only if A € H(F^(X)). 

The proof is analogous to that of A. Tarski [17] taking in account that Id(K*) 
are exactly all normal identities of K 

Theorem 3.7 (Second G. Birkhoff's Theorem on H,S-P>*) For every non­
empty class K of algebras of the same type r , 

HSP(K*) = Mod(Id(K*)). 

Proof The inclusion C. Given a nonempty class K of algebras. Let E = Id(K*). 
From Lemma 3.1: V(/C*) (= E, i.e. V(/C*) C Mod(E), therefore: 

HSP(K*) = V(/C*) C Mod(Id(K*)). 

The inclusion D. From the other hand, by Theorem 3.6, every element of 
Mod(Id(K*)) is a homomorphic image of a free algebra F/c*(-X"), which is an 
element of V(/C*), therefore: 

Mod(Id(K*)) C V(/C*) = HSP(K*). 

Finally we conclude: 

V(/C*) = HSP(K*) = Mod(Id(K*)). 

This proves the equality = in the H,S,P,* theorem of Birkhoff, because K* is a 
(normal) variety of algebras if and only if K* = HSP(K*), which follows from 
the well known inclusions bellow: 

(1) SH(K*) C HS(K*); 
(2) PH(K*) C HP(K*); 
(3) PS(K*) C SP(K*)] 

and the fact that HSP(K*) is obviously closed under * operation. • 
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