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Abstract 

To any (0,2)-tensor field on the tangent and cotangent bundles of a 
semi-Riemannian manifold, we associate a global matrix function 'mutatis 
mutandis' as in the Riemannian case. Based on this fact, natural (0,2)-
tensor fields on these bundles are defined and characterized. 
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1 Introduction 

In [1] and [2] we lifted to suitable bundles (0,2)-tensor fields defined on the tan­
gent and cotangent bundles over manifolds endowed with Riemannian metrics 
so that to look at them as global matrix functions. These matrix representa­
tions allowed us to define and classify natural (0,2)-tensor fields with respect 
to Riemannian metrics from a simple point of view. The main result that let 

* Partially supported by UBACYT 1998. 
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us characterize these tensor fields is Lemma 3.1 of [1], which is related to the 
orthogonal group of E n . In this paper the main result is Theorem 2.1, which is 
a generalized version of this Lemma to non-degenerate symmetric bilinear forms 
on E n . We apply this result to charaterize natural (0,2)-tensor fields—defined 
in the sense of [1], [2]—on tangent (Proposition 3.1) and cotangent (Proposition 
4.1) bundles over semi-Riemannian manifolds. 

Throughout, all geometric objects are assumed to be differentiable, i.e. C°° 

2 The main result 

For any integer n ^ 2 and v = 0 , 1 , . . . , n - 1 , let us define the following diagonal 
n x n matrices: 

(~l „ \ 

J 0 — I (the unit matrix) Iv 

V i 1 

Let q : E n -> E be the quadratic form defined by q(x) = x . Iv . xl, where 
x stands for a row vector. Let Ov(n) be the orthogonal group associated to q, 
i.e., a G Ov(n) if and only if a . Iv . a1 = Iv. 

Theorem 2.1 With the notations introduced above, if a differentiable map A : 

R n _± ̂ nxn satisfies __(x . a) = a1 . A(x) . a for any a G Ov(n) and x G E n , 
then there exist differentiable functions a, /3 : E -» E such that 

A(x) = a{c\(x)) . Iv + /3(q(x)) . xt . x. 

Proof If v = 0, the result is Lemma 3.1 of [1], so we assume that v = 1, , . . , n—1. 
We will divide the proof in three steps. 

S t e p 1. Let <, > be the bilinear form associated to q. Since v = 1. ..,n— 1, 
there exist two linearly independent vectors u, v G E n such that c\(u) = q(t>) = 0 
and < u, v >= | . Hence, if we define 9(t) = u -f t . v, one gets that c_(0(t)) = t 
for any £ G E. Let F : W1 -» E be a continuous function at zero such that 
F(x . a) = F(x) for any x G E n and a G Ov(n). If Fo0 : E -> E is differentiable 
we conclude that there exists a differentiable function / : E -» E such that 

F(x) = F(u) + q(x).f(ci(x)) (2.1) 

for any x G E n . In fact, let x G E n be a vector satisfying q(:z) = * # 0. Since 
Ov(n) acts irreducibly on E n and x ^ 0 , 9(t) ^ 0, the condition q(x) = q(0(t)) 
implies that there exists a matrix a G Ov(n) such that x . a = 0(t). Setting 
h = F - F(u), one gets: 

h{x) _ h(x . a) _ h( {t)) _ h( (t)) 

ą(x) ~ ą(x . a) ~ ą( (t)) ~ t 
= f í(ho )(s.t)ds 

jo ds 
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Hence, if we define 

/(*)= / SJ-(ho9){a.t)d8 
Jo ds 

for any t G M, it follows that / is differentiable and satisfies (2.1). 

S t e p 2. Here we prove that a differentiable map B : E n -» E n X n satisfying 

B(x . a) = a'1 . B(x) . a (2-2) 

for any x G E n and a G Ov(n) may be written in the form 

B(x) = a(q(x)) . I + /?(q(x)) . Iv . x
l . x (2-3) 

where a, /? : E -» E are differentiable functions. 
We observe that the function F : E n -» E defined by 

F(x) = tv(B(x)) (2-4) 

satisfies F(x . a) = F(x) for any a G C%(n). Hence, by the first step, there 
exists a differentiable function / : E -» E such that 

F(x)=F(u)+q(x).f(q(x)) (2-5) 

On the other hand, for any x G E n satisfying q(x) ^ 0, let us denote, 
respectively, with E . x, (E . x)-1, the subspace generated by x, and the or­
thogonal complement with respect to <, >; hence, E n = E . x 0 (E . x)1-. If 
Ox C Ov(n) denotes the isotropy group at x, for any a G Ox one gets that 
B(x) = B(x . a) = a~l . B(x) . a. Let Tx be the orthogonal symmetry with 
respect to q associated to the 1-dimensional subspace generated by x. It is clear 
that Tx(y) = y . a with a G Ox\ consequently E . x and (R . x ) x are invariant 
under B(x). We may identify Ox with the orthogonal group associated to the 
quadratic form q restricted to (E . x ) x . Consequently, there exist real numbers 
G(x) and a(x) such that 

x . B(x) = G(x) . x (2.6) 

and 
y . B(x) = a(x) . y (2.7) 

for any y G (E . x)-1. Since G(x) is given by 

_ , x x . 5 ( x ) . X* . 
G ( X ) = s . x ' ( 2 ' 8 ) 

let G : E n - {0} - r E be the differentiable map defined by (2.8). Condition 
B(0) = a""1 . B(0) . a for any a € Ov implies that B(0) = \i. / for some Li G E, 
and since 

x . 2?(x) . x t 

h m 7 = / i 
a;-^0 X . X1 
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the map G can be continuously extended to En by defining G(0) = L*. This 
function satisfies 

G(x . a) = G(x) (2.9) 

for any x G E n and a G Ov(n). In fact, since the set of vectors x G E n such 
that q(x) / 0 is dense in E n , we only need to check (2.9) on vectors belonging 
to this subset. But this is an immediate consequence of (2.2), (2.6) and (2.8). 

On the other hand, since 6(t) / 0 for any t e l , the function G o 9 : E ->> E 
is differentiable; hence, there exists a differentiable function g : E -> E such 
that 

G(x)=G(u)+q(x).g(q(x)) (2.10) 

for any x G E n . From (eq:26) and (eq:27) it follows that for any x G E n such 
that q(x) ^ 0, the real number a(x) is given by 

= F(x)-G{X) 
n — 1 

Let us define—via (2.11)—the differentiable function a : E n - {0} -> E and 

- = n G(X)-F(X) 

(n ~ 1) . q(x) 

if q(x) 7- 0. Then, one gets 

B(x) = a(x) . I + j3(x) .Iv.x
l.x (2.13) 

for any x G E n such that q(x) ^ 0. From (2.4), (2.5) and (2.10) it follows that 
F(u) = n . ji and G(u) = fi. Hence, if we define the differentiable mappings 
a , / 5 : E - + E b y 

a ( * ) ^ + t . M (2.14) 
n — 1 

аnd 

/j( t ) = n • g ^ - m (2.i5) 
n — 1 

then d(x) = a(q(x)) and /J(x) = /3(q(x)) if q(x) 7-- 0. Consequently, from (2.13) 
one gets 

B(x) = a(q(x)) . I + /3(q(x)) . Iv . xl . x (2A6) 

Now, equality (2.16) holds in E n because both members are differentiable 
maps on E n and coincide in a dense subset of E n . 

S t e p 3. Let A be a matrix satisfying the hypothesis of the theorem. The result 
now follows from the second step applied to B = Iv . A. • 
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3 Natural (0,2)-tensor fields on tangent bundles 

Let (M, g) be a semi-Riemannian manifold of dimension n ^ 2 and index v = 
0, ...,n - 1 . Let 7r : TM -> M be the tangent bundle over M, (9^(M) the 
bundle of orthonormal frames over (M, g) and ^ : N = Ol/(M) x En -> TM the 
map defined by 

n 
<KP,u5£) = ]T)f* • wi 

i = l 

where the orthonormal basis w = { i / i , . . . ,wn} of M p (the tangent space to M 
at p), is assumed to be ordered so that g(u\, u\) = . . . = g(uv, uv) = — 1 if v ^ 1 

ande = (^, . . . ,en) . 
The family of maps R a : N -> N , a G d , ( n ) , given by 

Ro(p,t*,0 = (p,ua,£. a"1) 

where ua = { £ ? = 1 aj . w i ? . . . , EJL-. an • w<} i f 

/ a } - . . a n \ 

a = : : 

\ a n ••• < / 

define the action of Ov(n) on N . Clearly i\) o R a = ^ . 
Let V be the Levi-Civita connection of # and K : TTM -> T M the connec­

tion map induced by V. For any p G M and any v G Mp, let 7T**, : (TM)V -> M p 

the differential map of 7r at v, and Kv : (TM)V -> M p the restriction of K to 
(TM)V. Since the linear map Tr*̂  x Kv : (TM)t, -> Mp x Mp defined by 
7r*v x Kv(b) = (ir*v(b),K(b)) is an isomorphism that maps isomorphically the 
horizontal subspace Hv (=kernel of Kv) onto Mp x {0P} and the vertical sub-
space Vv (= kernel of 71-*̂ ) onto {0P} x Mp, where 0P denotes the zero vector, we 
define as in [1], the differentiable mappings e*, e n + i : N —> T(TM) for 1 ^ i ^ n 
by 

e»(p ,u ,0 = (n*v
 x Kw)~1(wi,0p) and en+i(p,u,() = (71-^ X K y ) _ 1 (0 p ,u») 

where v = i^(p, u, £). 
Since (TM)V = Hv ®VV, any vector field K on T M may be written in the 

form K = X h + Kv, where 

X h ( u ) = (TT*, x K , ) - 1 (ir*v(X(v)),Op) 

and 
Kv(^) = (*„, x K , ) " 1 (Op,K(X(t;))) 

if v G Mp . Hence, the mappings e^e n + ^ let us view X as the function VX = 
( x 1 , . . . , x2n) : N -> M2n where xe : N -> 1 are determined—for v = i\)(p, u, £)— 
by 

#*(P>W>£) = -g(7T*i;(^(V)),Wi) 1 ^ i ^ 1/ . v 
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and 
xn+t(p,u,0 = -g(K(X(v)),щ) I ţ i ^ v 
xn+i(p,u,0 = g(K(X(v)),щ) u + l ^ i ^ n 

if v ^ 1. 
As in [1], for any (0,2)-tensor field G on TM we define the differentiate 

function 
Vn _ ( A\ A2 \ 1NJ m>2nx2n 

as follows: if ( p , « , $ ) E N and v = tp(p,u,£), let vG(p, u, £) be the matrix of the 
bilinear form Gv : (TM)V x ( T M ) , -> E induced by G on (TM)V with respect 
to the basis {e i (p ,^ ,£ ) , . . . ,e2n(p,u,£)}. Hence, each A\ : N -» R n x n satisfies 
the following Ou(n)-invariance property 

A * o R a = a..A* .a* (i = 1,2,3,4) (3.3) 

and for any pair of vector fields K, Y on T M one gets 

G(K, Y) o rp = VK . VG . ( ^ ) « (3.4) 

Just as we did in [1], we define G to be natural with respect to g if VG only 
depends on the variable £. Here also, we shall refer to VG as the matrix of G 
with respect to g. 

Proposit ion 3.1 Let G be a (0,2) tensor field on TM and VG = ( "41 , 2 J 

£/ie matrix of G with respect to g. Then G is natural with respect to g if there 
exist differentiable functions oti^fli : R —> E fi = 1,2,3,4J s^cft £/ia£ 

Ai(p,u,0 = Qi(q(0) • I, + A(q(0) • «•->)* • ( W 

Or, equivalently, if for any vector fields X,Y on TM the following equalities are 
satisfied 

G(Xh,Yh)(v) = ai(\v\2).g(7r*(X(v)U>(Y(v))) 

+ /MM2) • g(ir*(X(v)),v) . g(n.(Y(v)),v) 

G(Xh,Yv)(v) = a2(\v\2).g(ir.(X(v)),K(Y(v))) 

+ p2(\v\2) . g(ir.(X(v)),v). g(K(Y(v)),v) 

G(Xv,Yh)(v) = a4(\v\2).g(K(X(v)),n*(Y(v))) 

+ fa(\v\2).g(K(X(v)),v).g(n*(Y(v)),v) 

G(Xv,Yv)(v) = a3(\v\2).g(K(X(v)),K(Y(v))) 

+ p3(\v\2) . g(K(X(v)),v) . g(K(Y(v)),v) 

where \v\2 = g(v,v). 
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Proof According.to (3.3), if G is natural, each matrix function A{ can be 
viewed as a function B : W1 -> E n x n which satifies B(x . a"1) = a . B(a?) . a* 
for any a G 0„(n) or, equivalently, B(x . a) = a'1 . B(x) . (a"1)1. Setting 

A(x) = J„ • B(x) . I, (3.5) 

this matrix function verifies A(x.a) = a1 . A(x) . a for any a G 0„(n); hence, 
by the theorem above, there exist differentiable functions a,0 : E -» R such 
that 

A(x) = a(q(x)) . h + /?(q(x)) . x' . a? 

From (3.5) it follows that 

B(x) = a(q(x)) . Iv + /3(q(x)) . (x . Iv)
1 . (xJv) 

The expression of G applied to vector fields, is now a consequence of (3.1), (3.2) 
and (3.4). • 

4 Natural (0,2)-tensor fields on cotangent bundles 

For any p G M, let M* be the dual space of Mp and let n : T*M -> M be 
the cotangent bundle of M. For any (p, u) G Ou(M) we denote with (p, u*) the 
dual basis and 0*(M) the bundle consisting of all those ordered dual basis. Set 
N = 0*(M) x Rn and let rp : N -> T*M be the map defined by 

(̂p,«*,o = Ëб-tt< 

i = l 

if u* = {u1,. •-,""} a n d £ = (£i, . . . ,£n) . 
The family of maps R„ : N -> N, a £ Op(n), given by 

R.a(p,«*,0 = (P,«*a,^-a*) 

where u*o = (uo)* = {£^=1 6I • « ' , . . . , E,"=i 6? • «'} if 

/&} ••• 6?' 

a " 1 = : : 

defines the action of Ov(n) on N. Clearly, ^ o R a = ^ . 
Let K* : T(T*M) -» T*M be the dual connection map. We'll recall that 

for any p € M and any co-vector u> G M^ the restriction Kw = If*|(T*M)w
 : 

(T*M)W -» M^ is a surjective linear map, characterized by the fact that for 
any 1- form u on M such that uj(p) = w and any vector v G Mp, it satisfies 
Kw(u*p(v)) — VvkJ, where u*p : Mp -> (T*M)W denotes the differential map of 
cu at p. 
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Since the linear map n*w x K*w : (T*M)W -> Mp x M* defined by n*w x 
Kw(b) = (?r*ll;(6),K*(&)) is an isomorphism that maps the horizontal subspace 
Hw (= kernel of Kw) onto M p x {0P} and the vertical subspace Vw (= kernel of 
TT*W) onto {0P} x M*, where 0P denotes indistinctly the zero vector and the zero 
co-vector, we define as in [2] the differentialbe mappings e*, en+« : N -» T(T*M) 
for 1 ^ i ^ n by e,-(p,«*,0 = (TT^ X K ^ - ^ U i - O p ) and e n + i ( p , u * , 0 = (ir*w x 
K*,)™1 (Op,t*«) where it; = ^ ( p , u * , 0 . 

Since (T*M)W = Hu; 0 V^, any vector field X on T*M may be written in 
the form X = Xh + Xv, where 

X\w) = (TT^ X K ; ) - 1 ( 7 r ^ ( K H ) , 0 p ) 

and 
XY(w) = (TT^ x K*w)-1(Op,K*(X(w))) 

Hence the mappings e*, e n + i let us view X as the function YK = (x1,..., x2n) : 
N -> E 2 n where x£ : N -> R are defined, for w = \j)(p,u*,£), by 

xi(p,u\£>)=ui(iT*w(X(w)) (4.1) 

and 
*n+W,0=-C(*(«O)(«.) (4.2) 

As in [2], for any (0,2)-tensor field G on T*M we define the differentiable 
function 

vn __ ( Ax A2\ V G = U Z)-N 

as follows: if (p,u*,£) € N and w = V>(p,n*,£)> ^et V G(p,^* ,0 be the matrix of 
the bilinear form Gw = (T*M)W x (T*M)W -> E induced by G on (T*M)W with 
respect to the basis {ei(p,iL*,£),.. . ,e2n(p,u*,£)}. Hence, each A{ : N -> E n x n 

satisfies the following 0 l /(n)-invariance properties 

A1oRa = a. Ax .a1 (4.3) 

A2 o R a = a . A2 . a" 1 (4.4) 

A3oRa = (a-
1)t .As.a'1 (4.5) 

A4oRa = (a-1)t .A4.a
t (4.6) 

and for any pair of vector fields X,Y onT*M one gets 

G(X, Y) o t/> = VX . VG . (^V)« (4.7) 

Just as we did in [2], we define G to be natural with respect to g if VG only 
depends on the variable £. Here also we shall refer to VG as the matrix of G 
with respect to g. Since in this case each matrix function Ai can be viewed as 
a function A{ : Rn -+ E n x n satisfying 

Ax(x .a) = at . Ax(x) . a A2(x . a) = at . A2(x) . (a*)"1 

A3(x . a) = a" 1 . A3(x) . (a / )" 1 .A4(:r • a) = a" 1 . A4(x) . a 

for any x € Mn and a e Op(n), Theorem 2.1 implies: 
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Proposit ion 4 .1 Let G be a (0,2) tensor field on T*M and 

°-{A4 AS 

the matrix of G with respect to g. Then G is natural with respect to g if there 
exist differentiable functions a%,f}% : R -> R (i = l , 2 , 3 , 4 j such that 

A1 ( 0 = a i (q (0 ) • Iy + A (q (0 ) • €* - € (4-8) 

-42(0 = a 2 ( q ( 0 ) • / + A ( q ( 0 ) • ** • £ • ̂  (4-9) 

-4s(0 = a s ( q ( 0 ) • ̂  + A ( q ( 0 ) • ( W • ( W O (4-10) 

A 4 ( 0 = a 4 ( q ( 0 ) • / + ft(q(0) • « • h)1 • f (4.11) 

R e m a r k 4.1 If v = 0 then ;4<(0 = a*(q(0) • * + A ( q ( 0 ) • f* • £ for any 
i = 1,2,3,4. In this case proposition above is Theorem 5.2 of [2]. Consequently, 
only in the Riemannian case natural (0,2)-tensor fields on tangent and cotangent 
bundles have the same matrices VG. 

R e m a r k 4.2 Let 6 be the canonical 1-form on T*M which is defined by 

0(X)(W)=W(TT*(X(W)) 

for any vector field X on T*M and any co-vector w € T*M. If eg) denotes the 
tensor product, set 62 = 0 eg) 0, and let d8 be the exterior derivative of 6. The 
corresponding VG matrices are given by 

V02 = (Ax 0\ v ^ _ fBi -I 

o oy' \ i o 

where yl i(p ,u*,0 = €l • £and J?i(p, i t*,0 = (w(T(ui,Uj))) with w = xjj(p,u*,£) 
and being T the torsion tensor. Yet T is null, we have that 82 and d8 are natural 
with respect to g. 

R e m a r k 4.3 Let g* be the (2,0)-tensor field on M induced by g and for 
w £ T*M let |iU|2 = g*(w,w). If G is natural with respect to g, one sees 
from (4.1), (4.2) and from (4.7) to (4.11) that for any pair of vector fields X, 
Y on T*M the real valued functions G(Xh,Yh) , G ( K h , F v ) , G ( K v , F h ) , 
G ( K V , F V ) are given for any w G T*M by: 

G(xh,Yh)(w) = a i ( M 2 ) • gMKH),Mr(*D))) 

+ (3i(\w\2).6(X)(w).6(Y)(w) 

G(Xh,Yv)(w) = a 2 ( M 2 ) • K*(Y(w))(^(X(w))) 

+ (32(\w\2) . g*(w,K*(Y(w))) . 9(X)(w) 
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G ( K v , y h ) H - a4(\w\2) . K*(X(W))(TT*(Y(W))) 

+ (34(\w\2).g*(w1K*(X(w))).6(Y)(w) 

C 7 ( K v , r v ) H = a3(\w\2) . g*(K*(X(w)),K*(Y(w))) 

+ I33(\w\2) .g*(w,K*(X(w))) .g*(w,K*(Y(w))) 
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