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Abstract

We estimate sufficient and necessary conditions for the existence of
nonoscillatory solutions of the equation

(r2®)(r(®)e({z(t) — p(Oz(A()})) + f(t, 2(g(t))) =0

with specified asymptotic behaviour as t — co.
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1 Introduction

We deal with quasilinear neutral differential equations of the third order in the
form

(r2(B)(r1 (e (t) — pB)z(h(1)})) + f(t,2(9(*))) =0, t>a >0, (E)

where
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(a) p,ri:[a,00) = (0,00), i = 1,2 are continuous;

(b) h,g:[a,00) = R are continuous, h is strictly increasing, g is nondecreasing
and h(t) < t, g(t) <t for ¢t > a, lim¢yeo A(t) = 00, limy—y 00 g(t) = 00;

(c) ¢ : R — R is continuous, strictly increasing and such that ue(u) > 0 for
u#0, p(R) = R;

(d) f:[a,00)x R — R is continuous and f(¢,z) is nondecreasing in z and such
that uf(t,u) > 0 for u # 0 and all t > a.

Denote

Lox(t) = z(t) — p(t)a(h(2)); (1.1)
Dfa(t) = ri()p(Loz(1)),
Dfa(t) = r2(t)(DY2(®)), t>a.

Let T > a be such that

T, = min{h(T),ti?r_lgg(t)} >a. (1.2)

By a proper solution z of (E) we mean a continuous function [T,,00) — R
such that L,z(t), DY z(t), D§z(t) are continuously differentiable on [T, 00), z(t)
satisfies the equation (E) on [T, 00) and it is nontrivial on any neighbourhood
of co. A proper solution z(¢) of (E) is nonoscillatory if there exists a Ty > T,
such that z(t) # 0 for all ¢t > T5.

The object of this paper is to give conditions for the existence of several types
of nonoscillatory proper solutions of (E) with specified asymptotic behaviour as
t — co. When p(t) =0, g(t) = ¢, then equations (E) reduces to

(ra(O)(r (e’ (1)) + f(t,2()) = 0. (E1)

The existence of nonoscillatory solutions of the equation (E;) has been stud-
ied in the paper [5] under the assumptions

[l Ga)la=e [ ame==

A systematic study of nonocillatory properties of quasilinear neutral differential
equations of second order have been done for example in the paper [3, 6-9].
Next we will assume that either

/Oogo—l( k )’dt:oo, /widt<oo (1.3)

r1(t) ro(t)
o1 (rllzt))ldt < o0, /aoo

or

r

90_1( k_[* ds );dt:oo (1.4)

() Jo ra(s)
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for every k # 0, where 1 is the inverse function to ¢. In the paper [2], where

[ dt/ro(t) = oo there are studied asymptotic properties of solutions of the
equation (E).
We denote

. t s H
érr(r1,r2 1 t) = / o ! (L LdT) ds, (1.5)

T ri(s) Jr r2(7)
Gr(ri,re i t) = dra(ri,r2 0 t) t>T >a, k#0.
From (1.5) in view of (1.3) or (1.4) we get that
¢k 1(r1,72 1 00) = 00.
Let z(t) be a nonoscillatory solutions of (E) defined on [t,, 00), to > a. From
the equation (E) and assumptions (a)—(d) it follows that the function L,z(t)
has to be eventually of a constant sign, so that

z(t)Loz(t) >0 or z(t)L,z(t) <0

for all sufficiently large t. We denote by N the set of all proper nonoscillatory
solutions of (E) and define

Nt ={z € N:z(t)L,z(t) >0 for all large t},

N™={z € N:z(t)L,z(t) >0 for all large t}.

We introduce the notation:

v(t) = sup(s > a:g(s) <) (1.6)
Yu(t) = sup(s > a: h(s) < t).
RO(t) = t, B (¢) = BEU(h(t), k=1,2,... (1.7)
k-1
P(t) =1, P(t) = [[ p(hf (1)), k=1,2,... (1.8)
=0

Let z(t) € NT for t > t; > (o). Then from (1.1) with regard to the last
relations we obtain

n(t)—1
z(t) = Z Pi(t) Loz (MM (t)) + Pogey )z (RN (2)),  t > towy = W (tn(ey-1)s

k=0
(1.9)
where n(t) denotes the least positive integer such that t, < AP®(t) < t;.
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2 Existence of nonoscillatory solutions

Let T,Tp be defined by (1.2) Let C[T,,0) be a Frechet space of all continuous
functions defined in [T,,00) with the topology of the uniform convergence on
any compact subintervals of [T}, 00).
1) Let 0 < p(t) < A\ < 1. Define the operator ¢y, : C[To, ) = C[T5,00)
as follows
n(t)—1

Z Pyl O] + Pagoy ) 1550y, 2T, (2.1)

7)
%m, t € [T,,T)

j(t) = ¢/\1 y(t) =

where n(t) denotes the least positive integer such that T, < ROl < T

2) Let p(t) > Ay > 1. Let C)\[T,, 00) stand for a subject of C[T,,00) consit-
ing of all functions y(t) such that the series Y5, A;*|y(hl*l(¢))| are unformly
convergent on every compact subinterval of [T, 00).

Define the operator ¢y, : Cx,[T,0) = C[T, 00) as follows

[k
I(t) = day(t) = Z f,’-%;—% t>T,, (2.2)

where h~[* is the inverse function to Al*!

Lemma 2.1 Ify € C[T,00), then
a) T = ¢y satisfies the functional equation

i(t) - pt)z(h(t) = y(t), t>T. (2.3)
b) Z = ¢,y satisfies the functional equation
#(t) —pt)z(h(t)) = —y(t), t>T. (2.4)

Proof of Lemma follows immediately from (2.1) and (2.2) respectively.

Theorem 2.1 Let the assumptions (a)-(d) and either (1.3) or (1.4) hold. In
addition let either

0<p(t) <A<l or 1<A<p(t)<po< oo (2:5)

[l Gl awl s

for some constant d # 0.
Then there exists a nonoscillatory solution = of (E) such that

Suppose that

dt < © (2.6)

lim |L,z(t)] = ¢ >0, lim |DYz(t)| =0, lim |DSz(t)|=0. 2.7
t—o00 t—o0 t—o0
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Proof Suppose that (2.6) holds for some constant d > 0. Let ¢ > 0 be a
constant such that either 2¢ < d(1 — A1), 0 < Ay < 1 or 2¢ < d(Ay — 1) for
Ao > 1.

We choose T' > a so large that (1.2) and

fooGal

1) Let 0 < p(t) < A < 1on [Ty, 0).

With each y € C[T,,00) we define the mapping z : [T,,00) = R by (2.1). In
view of Lemma 2.1 Z(t) = ¢, y(t) satisfies the relation (2.3).

Define a convex subset Y of C[T,, ) as follows:

1 o c
5 / f(r,d)drds)dtg : (2.8)

Y ={y € C[T,,) : ¢ < y(t) <2con [T,00) and y(t) = y(T) on [T, T]}. (2.9)

If y € Y then using (2.1) and (2.3) we obtain

c<it) < —2X_<d t>T (2.10)

1-X\

2) Let 1 < Ay < p(t) < po < 0. For each y € C[T,0) we define the
mapping: & : [T,00) — R by (2.2). With regard to Lemma 2.1, & = ¢,y
satisfies the relation (2.4).

If y € Y, then using (2.2) and (2.4) we get

0<

c
— t>T. 2.11
Po - ( )

We now define an operator F : Y — C[T,, 00) by

c+ [Tt (;11?7 e T—Z%f:o f(r,i'(g(r)))drds) dr, t > T,

(Fy)(t) = {
(Fy)T), T,<t<T.

(2.12)
We will show that the Schauder—Tychonoff fixed point theorem ensures the
existence of a fixed element y, = F'y, € Y and this

Yo(t) = Z,(t) — p(1)Z, (h(t)) = LoZ(t)

satisfies the desired asymptotic properties (2.7). The Schauder—Tychonoff fixed
point theorem can be applied to the operator F if:

i) F mapsY into Y;
ii) F is continuous on Y’

iii) F(Y) is a relatively compact.
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i) Let y € Y, then from (2.12) in view of (2.10), (2.11) the assumption (b) and
(2.9) we get

< (Fy)t) <c+ / (ﬁ s / — / drds)dr

3
< 5e<2 t27T,

where A = A\; or A = ;.

ii) F'is continuouson Y. Let y,,y €Y (n=1,2,...)and y, >y asn — oo
in the space  C[T,,00). This means that y,(t) = y(t) as n = oco. Using the
Lebesque dominanted theorem we can show that (Fy,)(t) = (F'y)(t) asn — oo
uniformly on every compact subinterval of [T, c0).

iii) F(Y) is a relatively compact. By the Arzela-Ascoli theorem, it is suffi-
ciently to prove that F(Y) is uniformly bounded and equicontinuous at every
point ¢ € [T,,00). The uniformly bounded of F(Y) is clear since ¢ < (Fy)(t) <
2¢c,t>T, forany y €Y.

The equicontinuity of F(Y) follows from the relation

0< (Fy)(t) < o~ (% [ =] mf(r,f(g(r)»drds)

< gp—l(rl(t)/:or—i?)/smf(r,d)drds), t>T

holds for any ¥ € Y and the right-hand side of the above given inequality is
independent on y € Y.

Then we can apply the Schauder—Tychonoff fixed point theorem to the op-
erator F': Y — Y. Then, from (2.13) we get

y(t)=c+/t v (rl('r)/ 7_2(3/ fr, 2( drds)d‘r, t>T,

(2.13)
where y(t) = Z(t) — p(t)Z(h(?)).
From (2.13) in view of (2.6) we get

Jim y(t) = ¢, lim ri (') =0,  lm ra(@)(r()e(y' (1)) =
Theorem 2.2 Let the assumptions (a)-(d), either (1.3) or (1.4) hold. Let
0<p(t) <A <1, (2.14)

and

/ : (6 culriors - g(&)]dt < oo (2.15)

for some constants ¢ # 0, k # 0, ke > 0.
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If
drr(ry,m2 1 t)

_ 2.1
1504150 Sr,(r1,m2 0 1) 0 (210

uniformly on any subinterval [T1,00) C [T, 00) and

[t [ oo

for any d # 0, then the equation (E) has a nonoscillatory solution of the type

dt = (2.17)

; — ; ® — ; ® —
Jim |Loz(t)] = o0, Jim |Dfa(t) =b; >0, lim Dfa(t)=0.  (218)

Proof We consider the case £ > 0, ¢ > 0 and d > 0. Let ¢, be such that
0 < ¢, < c. In view of (2.15), (2.16) there exist positive constants [ : [ < k and
T > a such that (1.2),

Co+ di(r1,re i t) < chp(ri,ra:t), t>T (2.19)

and

/T Tt (o + i < g(8)/(1 = M)t < L. (2.20)

Define the set Y, C C[T,, 00) where C[T,,00) is the space defined in the proof
of Theorem 1 and the mapping F : Y — C[T,, c0) as follows.

Y ={y € C[T,,00) : co S y(t) < co + du(r1,72 : 1),

t € [T,00); y(t) =y(T), t € [To,T]}. (2.21)
Fo ) { co+ Jr o7 (5 S wikey S 10 8(9()drds) dr ¢ > T
Co: t e [TO)T]y
(2.22)

where Z(t) is the function defined via (2.1) and satisfies (2.3). Then in view of
(2.1) and (2.21) we have

e SUl) SEO) < Tl + Gilrrat)), 2T (229)
-l

We can prove that F maps Y, into Y,. For any y € Y, in view of (2.19), (2.20),
(2.23) and the assumption (b) we have

co < (Fy)(t)
ot [0 (st [t [ 1 oo+ s otinds )

¢ 1 [ 1
Co + _1(-— ———ds)dT:c+ ri,re:t), t>T.
/I‘SO TI(T) T TQ(S) 0 ¢l( 1,72 )

We can similarly as in the proof of Theorem 1 to verify that F is the continuous
operator and FY, is a compact in C[T,,00). Then by the Schauder-Tychonoff

IA

IN
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fixed point theorem there exists a fixed element y, = Fy, € Y,, which satisfies
the equation

et Jro™ (547 Jr wksy I3 £, olg(r)))drds) dt, ¢ > T,
Co, tE€|[T,,T],

(2.24)
where y,(t) = Z,(t) — p(£)Z,(9(t)), t > T and F,(t) is a solution of (E). From
(2.20) in view of the monotonicity of the function f, (2.17) and the fact that
Z(g(t)) > ¢co > 0 for t > v(T') we obtain that

t11>no]o vo(t) = tliglo Lo3(t) = oo.

Differentiating (2.22) and then adaptation it, we get

t %)
DY#(t) = m(p(LLE(®D) = /T % / £(r, &(g(r))drds,

DER() = ra(t)(DP(D))' = / " (i #(g(r)) ds. (2.25)

In view of the monotonicity of DY, (2.23), (2.15) we obtain that there exists a
positive limit of DY Z(t). From (2.25), in view of (2.16) we get that

; @ —
tli)r(r)lo D3z(t) = 0.
We proved that Z(t) is a nonoscillatory solution of the type (2.18).

Theorem 2.3 Suppose that (a)-(d), (1.3), (2.14) and (2.16) hold. Then equa-
tion (E) has a nonoscillatory solution of the type

tkr{:o |Loz(t)| = oo, tll)rgo |Dfz(t)| = b >0, tli>n°1°|D2‘pz(t)l =c >0
if and only if (2.15) holds for some constants k,c such that kc > 0.
Proof of this theorem is the same as the proof of the Theorem 1 (the “only
if” part) and the proof of Theorem 2 (the “if” part) in the paper [2]. Therefore

we omit it.

Theorem 2.4 Let the assumptions (a)-(d), (1.4), (2.14) and (2.16) hold. Then
the equation (E) has a nonoscillatory solution of the type

. . . v . . " _
Jim |Loz(t)| = 00, lim [DYz(t)| =00, lim |Dyz(t)| = a1 >0
if and only if (2.15) holds for some constants k,c such that kc > 0.

The proof of Theorem 2.4 is the same as the proof of Theorem 2.3.
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