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Abstract 

We estimate sufficient and necessary conditions for the existence of 
nonoscillatory solutions of the equation 

(r2(t)(n(t)V({x(t)-p(t)x(h(t))}'))')' + f(t,x(g(t))) = 0 

with specified asymptotic behaviour as t —> oo. 

K e y words : Quasilinear neutral differential equations, nonoscila-
tory solutions, Schauder-Tychonoff fixed point theorem. 

1991 Mathematics Subject Classification: 34K40, 34K25 

1 Introduction 

We deal with quasilinear neutral differential equations of the third order in the 
form 

(r2(t)(ri(t)<p({x(t) -p(t)x(h(t))}'))')' + f(t,x(g(t))) =0, t>a>0, (E) 

where 

* Supported by the grant 1/5254/98 of Slovak Agency. 
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(a) p,ri : [a, oo) -> (0, oo), i = 1,2 are continuous; 

(b) /i, g : [a, oo) —.> I? are continuous, /i is strictly increasing, # is nondecreasing 
and h(t) < t, g(t) < t for t > a, l im^oo MO = oo, l im^oo g(t) — oo; 

(c) ip : i? -» R is continuous, strictly increasing and such that r/</?(it) > 0 for 
w ^ O , <D(Ii) = it; 

(d) / : [a, oo) x R -> i? is continuous and /(£, x) is nondecreasing in x and such 
that uf(t, u) > 0 for u ^ 0 and all £ > a. 

Denote 

L0x(t) = x(t) - p(t)x(h(t)); 

Dfx(t) = Гl(tЫĽ0x(t)), 
Dţx(t) = r2(t)(D*x(t)У, t > а. 

(1.1) 

Let T > a be such that 

T0 = min{h(T), inf g(t)} > а. (1.2) 

By a proper solution x of (E) we mean a continuous function [T0,oo) —> R 
such that L0x(t), Dfx(t), D2 x(t) are continuously differentiable on [T, oo), x(t) 
satisfies the equation (E) on [T, oo) and it is nontrivial on any neighbourhood 
of oo. A proper solution x(t) of (E) is nonoscillatory if there exists a Ti > T0 

such that x(t) ^ 0 for all t > T x . 
The object of this paper is to give conditions for the existence of several types 

of nonoscillatory proper solutions of (E) with specified asymptotic behaviour as 
t —> oo. When p(t) = 0, g(t) = t, then equations (E) reduces to 

(r2(t)(Гl(tЫx'(t))УУ + f(t,x(t)) =0. (Ei) 

The existence of nonoscillatory solutions of the equation (Ei) has been stud­
ied in the paper [5] under the assumptions 

/ > • ( 
J a i \ 

k 

n(t) 
dt = oo, 

ť°° 1 
Ja Г2(t) 

dt = oo. 

A systematic study of nonocillatory properties of quasilinear neutral differential 
equations of second order have been done for example in the paper [3, 6-9]. 

Next we will assume that either 

or 

ГУШ 

LVШ 

dt = oo, 

dt < oo, 

r°° i 

A r2(t) 

í°° ( k / ' ds 

I a ^KnDJo Mš) 

dt < 00 

dt = oo 

(1.3) 

(1.4) 
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for every k 7- 0, where (D"1 is the inverse function to ip. In the paper [2], where 
J dt/r2(t) = 00 there are studied asymptotic properties of solutions of the 
equation (E). 

We denote 

<f>k,T(rur2:t) = [ yT 1 ( - U / -^rdr)ds, (1.5) 
JT \ri(s) JT r2(r) J 

<t>k(ri,r2 : t) = </>M(TT,r2 : t) t > T > a, k ^ 0. 

From (1.5) in view of (1.3) or (1.4) we get that 

<f>k,T(ri,r2 : 00) = 00. 

Let x(t) be a nonoscillatory solutions of (E) defined on [t0, 00), £0 > «• From 
the equation (E) and assumptions (a)-(d) it follows that the function L0x(t) 
has to be eventually of a constant sign, so that 

x(t)L0x(t) > 0 or x(t)L0x(t) < 0 

for all sufficiently large t. We denote by IV the set of all proper nonoscillatory 
solutions of (E) and define 

IV+ = {x e IV : x(t)L0x(t) > 0 for all large r}, 

IV" = {x e IV : x(t)L0x(t) > 0 for all large t}. 

We introduce the notation: 

j(t) = sup(s > a : g(s) < t) (1.6) 

^h(t) = sup(s > a : h(s) < t). 

hW(t) = t, /iW(r) = ^ - 1 l ( / i ( r ) ) , k = l , 2 , . . . (1.7) 

k-i 

P0(t) = 1, Pk(t) = l[p(hW(t)), k = l , 2 , . . . (1.8) 
i=0 

Let x(t) G N+ for t > t\ > 7(^0)- Then from (1.1) with regard to the last 
relations we obtain 

n(t)-l 

x(t)= Y, Pk(t)L0x(hW(t)) + Pn(t)(t)x(h^(t)), t>tn{t)=Jh(tn{t)^), 
k=0 

(1.9) 
where n(t) denotes the least positive integer such that t0 < h^n^(t) < ti. 
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2 Existence of nonoscillatory solutions 

Let T,T0 be denned by (1.2) Let C[T0,oo) be a Frechet space of all continuous 
functions denned in [T0,oo) with the topology of the uniform convergence on 
any compact subintervals of [T0, oo). 

1) Let 0 < p(t) < Ai < 1. Define the operator cj)Xl : C[T0,oo) -> C[T0,oo) 
as follows 

f n(t)-l ҐT) 

x{t) = <t>\Mt) = < 
E Pk(t)y[hW(t)] + Pn(t)(t)j^, *>T, ( 2 1 ) 

, i - p ( T ) ' * ^ YPO,T\ 

where n(t) denotes the least positive integer such that T0 < h^n^(t) < T. 
2) Let p(t) > A2 > 1. Let CX[T0, oo) stand for a subject of C[T0, oo) consit-

ing of all functions y(t) such that the series J2kLi ^ * | y ( ^ W ) l a r e unformly 
convergent on every compact subinterval of [T, oo). 

Define the operator (f)X2 : CX2[T,oo) -* C[T,oo) as follows 

where ft""-*- is the inverse function to ft-*-. 

Lemma 2.1 If y £ C[T,oo). £ften 

a) x = 4>Xly satisfies the functional equation 

x(t)~P(t)x(h(t)) = y(t), t>T. (2.3) 

b) x = 4>X2y satisfies the functional equation 

x(t) - p(t)x(h(t)) = ~y(t), t > T. (2.4) 

Proof of Lemma follows immediately from (2.1) and (2.2) respectively. 

Theorem 2.1 Let the assumptions (a)-(d) and either (1-3) or (1.4) hold. In 
addition let either 

0 < p(t) < Ai < 1 or 1 < A2 < p(t) <p0<oo. (2.5) 

Suppose that 

fhfef^of^***) dt < 00 (2.6) 

for some constant d ^ 0. 
Tften £ftere exi-ste a nonoscillatory solution x of (E) such that 

lim \L0x(t)\ - c > 0 , lim \Dfx(t)\ = 0, lim \D$x(t)\ = 0. (2.7) 
£—>-oo £—>oo t—»oo 
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Proof Suppose that (2.6) holds for some constant d > 0. Let c > 0 be a 
constant such that either 2c < d(l — Ai), 0 < Ai < 1 or 2c < d(A2 - 1) for 
A2 > 1 . 

We choose T > a so large that (1.2) and 

f"" ,(^r^r / ( r ' r f )" s)<*£ i ' <2-8) 
1) Let 0 < p(t) < Ai < 1 on [T0, oo). 
With each y G C[T0, oo) we define the mapping x : [T0, oo) -* i t by (2.1). In 

view of Lemma 2.1 x(t) = <t>\xy(t) satisfies the relation (2.3). 
Define a convex subset Y of C[T0, oo) as follows: 

y = {H G C[T0,oo) : c < y(t) < 2c on [T,oo) and y(t) = H(T) on [T0 ,T]} . (2.9) 

If H G y then using (2.1) and (2.3) we obtain 

2c 
c < x(t) < — < d, t > T . (2.10) 

1 - Ai 

2) Let 1 < A2 < p(t) < p0 < oo. For each y G C[T, oo) we define the 
mapping: x : [T, oo) —> R by (2.2). With regard to Lemma 2.1, x = 0A22/ 
satisfies the relation (2.4). 

If y £ y , then using (2.2) and (2.4) we get 

c 2c 
0 < — < x(t) < < d, t > T. (2.11) 

Po A2 - 1 

We now define an operator F : y -> C[T0, oo) by 

™w - ( c + r ^ ^ r * r /(r' " ( 5 ( r ) ) ) d r d s ) d T > ' - T' 
\ (Fy) (T) , T0<t<T. 

(2.12) 
We will show that the Schauder-Tychonoff fixed point theorem ensures the 

existence of a fixed element y0 = FH0 G y and this 

Vo(t) = ^o(0 - p(t)x0(h(t)) = L0x(t) 

satisfies the desired asymptotic properties (2.7). The Schauder-Tychonoff fixed 
point theorem can be applied to the operator F if: 

i) F maps Y into Y; 

ii) F is continuous on Y; 

iii) F ( y ) is a relatively compact. 
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i) Let y eY, then from (2.12) in view of (2.10), (2.11) the assumption (b) and 
(2.9) we get 

< ^c < 2c, t > T0, 

where A = Ai or A = A2. 

ii) F is continuous on Y. Let Hn, u E y (n = 1,2,...) and Hn -> u as n —r oo 
in the space C[T0,oo). This means that yn(t) -» H(£) as n -> oo. Using the 
Lebesque dominanted theorem we can show that (Fyn)(t) -» (Fy)(t) as n -> oo 
uniformly on every compact subinterval of [T0, oo). 

iii) F ( y ) is a relatively compact. By the Arzela-Ascoli theorem, it is suffi­
ciently to prove that F(Y) is uniformly bounded and equicontinuous at every 
point t E [T0, oo). The uniformly bounded of F(Y) is clear since c < (Fy)(t) < 
2c, t > T0 for any y E Y. 

The equicontinuity of F(Y) follows from the relation 

o < (WW < v - ( ^ f ^ / " /('• *faM))<w>) 

holds for any ^ E F and the right-hand side of the above given inequality is 
independent on y E Y. 

Then we can apply the Schauder-Tychonoff fixed point theorem to the op­
erator F : y -> y . Then, from (2.13) we get 

y(t) = c + f „-- (-*-- /°° - ^ ^ /(r, SOW))**) dr, * > T, 
(2.13) 

where ?/(£) = x(t) — p(t)x(h(t)). 
From (2.13) in view of (2.6) we get 

lim y(t) = c, lim n(tMyf(t)) = 0, lim r2(*)(ri(*)v(»'(t)))# = 0. 
t-rOO t—rOO £-rOO ' V 7 / 

Theorem 2.2 Let the assumptions (a)-(d), either (1.3) or (1.4) hold. Let 

0<p(t)<Xi < 1 , (2.14) 

and 
•̂oo 

| / ( t , c0*( r i , r 2 : ff(.)))|tft < oo (2.15) / 
Jч( 
h(a) 

for some constants Cy£0, k 7- 0. kc > 0. 
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if 

lim Mn,r2:t) 

i->o,ki>o (Pk,T(ri,r2 : t) 

uniformly on any subinterval [Ti,oo) C [T,oo) and 

/ k _ 1 ( — m / ~П / f(r,d)drds) 
Ja Ыt) j 0 Г2(s) Js 

dt = oo (2.17) 

for any d ^ 0, then the equation (E) has a nonoscillatory solution of the type 

lim \L0x(t)\ = oo, lim\Dfx(t)\=bi>0, lim D$x(t) =0. (2.18) 
t-+oo t-+oo t—>oo 

Proof We consider the case k > 0, c > 0 and d > 0. Let c 0 be such that 
0 < c 0 < c. In view of (2.15), (2.16) there exist positive constants I : I < k and 
T>a such that (1.2), 

Co + <t>i(rur2 : t) < c<j)k(rur2 :t), t>T (2.19) 

and 
•̂oo 

f(t,(c0+<f>l(r1,r2:g(t))/(l-\1))dt<l. (2.20) 
/ ; /T 

Define the set Y0 C C[T0, oo) where C[T0, oo) is the space defined in the proof 
of Theorem 1 and the mapping F : Y -> C[T 0, oo) as follows. 

Y = {y G C[T0,oo) : c 0 < y(t) < c0 + 0,(r i , r 2 : *), 

* G[T, oo); y(t) = „(T), * G [T0,T]}. (2.21) 

(FV)(*) = { C° + ^ ^ G*J ̂  ^ r /<r> *(»W))**) dr, * > T 
\ c 0 , t € [ T 0 , T ] , 

(2.22) 
where #(£) is the function defined via (2.1) and satisfies (2.3). Then in view of 
(2.1) and (2.21) we have 

Co < y(t) < x(t) < r ( c 0 + <t>i(rur2;t)), t > T. (2.23) 
1 - Ai 

We can prove that F maps Y0 into Y0. For any y G Y0, in view of (2.19), (2.20), 
(2.23) and the assumption (b) we have 

Co < (Fy)(t) 

<c0+ f~l\—T~\ I ~~7~\ / ( r > i —(c0 + (j)i(ri,r2:g(r)))drds)dt 
JT \ri(r) JT r2(s) JT 1 - Ai / 

JT VriO") 7r r2(^) / 
< C, 

We can similarly as in the proof of Theorem 1 to verify that F is the continuous 
operator and FY0 is a compact in C[T0,oo). Then by the Schauder-Tychonoff 
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fixed point theorem there exists a fixed element y0 = Fy0 £ Y0, which satisfies 
the equation 

_jc0 + fT „-- (--jj-j £ - £ - r /(r. x0(5(r)))drda) dt, t > T, 

[c0, t€[TOJT], 
(2.24) 

where y0(t) = x0(t) — p(t)x0(g(t)), t >T and x0(t) is a solution of (E). From 
(2.20) in view of the monotonicity of the function / , (2.17) and the fact that 
%(9(t)) > Co > 0 for t > 7(T) we obtain that 

lim y0(t) = lim L0x(t) = oo. 
t—rOO t-+00 

Differentiating (2.22) and then adaptation it, we get 

D?x(t)=n(tML'0x(t))'= [ -4-T r f(r,x(g(r))drds, 
JT r2\S) Js 

/

oo 

f(r;x(g(r)))da. (2.25) 

In view of the monotonicity of D\x, (2.23), (2.15) we obtain that there exists a 
positive limit of Dfx(t). From (2.25), in view of (2.16) we get that 

lim D_°x(t) = 0. 
t—TOO 

We proved that x(t) is a nonoscillatory solution of the type (2.18). 

T h e o r e m 2.3 Suppose that (a)-(d), (1.3), (2.14) and (2.16) hold. Then equa­
tion (E) has a nonoscillatory solution of the type 

lim \L0x(t)\ = oo, lim \Dfx(t)\ = bi > 0, lim \Dfx(t)\ = cx > 0 
t—TOO ' ' t—>oo t—>-oo 

if and only if (2.15) holds for some constants k, c such that kc > 0. 

Proof of this theorem is the same as the proof of the Theorem 1 (the "only 
i f part) and the proof of Theorem 2 (the "if part) in the paper [2]. Therefore 
we omit it. 

T h e o r e m 2.4 Let the assumptions (a)-(d), (1.4), (2.14) and (2.16) hold. Then 
the equation (E) has a nonoscillatory solution of the type 

lim |L0.r(£)| = oo, lim \Dfx(t)\ = oo, lim IDf x(i) | = ai > 0 
t—rOO ' t—rOO t~TOO 

if and only if (2.15) holds for some constants k,c such that kc > 0. 

The proof of Theorem 2.4 is the same as the proof of Theorem 2.3. 



Asymptotic properties of solutions of the third order quasilinear . . . 167 

References 
[1] Elbert, A., Kusano, T,: Oscillаtion аnd nonoscillаtion theorems for а clаss of second 

order quаsilineаr differentiаl equаtions. Acta Math. Hung. 56, 3-4 (1990), 325-336. 

[2] Janík, V., Marušiak, P.: Existence of nonoscillаtory solutions of the third order quаsi-
lineаr neutrаl differentiаl equаtions. Fasciculi Mathematici (to appear). 

[3] Jaroš, J., Kusano, T., Marušiak, P.: Oscillаtion аnd nonoscillаtion theorems for second 
order quаsilineаr functionаl differentiаl equаtгons of neutrаl type. Advances in Math. 
Sciences and Applications, Tokyo, 9, 1 (1999), 333-346. 

[4] Jaroš, J., Kusano, T.: Asymptotic Behаvior of Nonoscillаtory Solutions of Functionаl 
Differentiаl Equаtions of Neutrаl Type. Funkcialaj Ekvacioj 32, 2 (1989), 251-263. 

[5] Knežo, D., Šoltés, V.: Existence аnd properties of nonoscillаtory solutions of third order 
differentiаl equаtions. Fasciculi Mathematici, 25 (1995), 63-74. 

[6] Kusano, T., Marušiak, P.: Asymptotic properties of solutions of second order quаsilineаr 
functionаl differentiаl equаtions of neutrаl type. Math. Bohemica (to appear). 

[7] Marušiak, P.: Asymptotic properties of nonoscillаtory solution of neutrаl delаy differ-
entiаl equаtion of n-th order. Czech. Math. J. 47, 122 (1997), 327-336. 

[8] Marušiak, P., Špániková, E.: On existence of nonoscillаtory solutions of second order 
quаsilineаr differentiаl equаtions. Proceedings of International Conf. of Math., Žilina, 
1998, 175-182. 

[9] Marušiak, P., Růžičková, M.: Asymptotic theory for а clаss of second order quаsilineаr 
neutrаl dгfferentiаl equаtions. Proceeding of International Conf. of Math., Žilina, 1998, 
167-174. 


		webmaster@dml.cz
	2012-05-03T23:29:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




