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Abstract 

Free parameters of quadratic interpolatory spline can be used not only 
for some boundary conditions, but also to minimize some functionals with 
geometrical or physical meaning (curvature, energy). We shall consider 
some cases of functionals which can be expressed as quadratic form in 
some local spline parameters. Then the problem to find optimal values of 
free parameters under continuity constraints can be stated as quadratic 
programming problem with equality constrains and solved with standard 
QP algorithms or with some more simple algorithms (using pseudoinverse 
or least squares techniques) in special cases. 
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1 Introduction 

The linear space of quadratic interpolatory splines with given monotone se­
quence of spline knots #$, i = 0(1)n + 1 and different sequence of points of 
interpolation ti, i — 0(l)n has two free parameters, used usually for boundary 
conditions prescribed. We can use these free parameters to find such inter­
polatory spline which minimizes some proper norm or another functional with 

* Supported by the Council of Czech Government, J 14/98:153100011. 
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geometrical or physical meaning, which can be more easily recognized by the 
user than proper boundary conditions. Such extremal property of natural cubic 
splines with respect to the L2-norm of second derivative (on some more general 
class of functions) was recognized many years ago and used in variational theory 
of splines and for construction of smoothing splines. Quadratic splines inter­
polating function values do not have such more general extremal property (but 
similar property was recognized in the problems of mean values or derivative 
values interpolation), so the optimization is done here in the class of interpola-
tory splines only. Quadratic splines on simple knotset (which have only one free 
parameter) with minimal curvature were studied in [2], more generally in [3]. 
Here we shall study the more general case of points of interpolation distributed 
between knots and problems of interpolation of function values, mean values 
and derivative values from this point of view. 

2 Notation—norms and functionals used 

2.1 Notation used for quadratic splines 

Let us have given the spline knotset { x j , resp. points of interpolation {ti}, 

(x, t) : x0 < x\ < • • • < xn < xn+i, Xi <ti < Xi+i, i = 0(l)n. (1) 

We shall use the following notation: 
S2i (x)—the linear space of interpolatory quadratic splines with defect one on 
the given knotset x; 
s(x) £ C1—quadratic interpolatory spline, consisting from quadratic segments 
on intervals [xi,Xi+\], i = 0(l)n, with local parameters 

Si = s(xi), mi = s'(xi), Mi = s"(ti), hi = Xi+i-Xi. 

The notation Gj will be used for complementary local parameter—function value 
(FV) or derivative value (DV) in point of interpolation ti, local mean value (MV) 
over interval [a^Xi+i] in considered interpolation problems. 

When we choose some local representation of a quadratic spline, then the 
continuity of the first derivative (or even of function values, when they are not 
used in the local representation) can be expressed in the form of three term 
recursions, which we will call continuity conditions (CC). Different local repre­
sentations and corresponding continuity conditions will be used in the following 
sections (see e.g. [4]) for the solution of the problems mentioned. 

2.2 Functionals minimized 

We can try to minimize similar functional as with natural cubic spline—for 
quadratic spline with piecewise constant second derivative we obtain 

j2(s) = r+\s"{x)fdx=]r r+i[s"(x)]2dx=j2hiM? 
•l̂ o i-o "!-' 8=0 

(2) 
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We can also consider the functionals corresponding to the discrete fe-norm or 
its weighted form 

J2d(s) = \\M\\i = J2M?, J&(«) = X>M< 3 . (3) 
i=0 i=0 

This last functional contains also the case of the approximation of the norm 
of the curvature of the spline curve, when we use for weighting coefficients the 
values Wi = (1 +P f )~ 3 , with slopes pi = (s«+i — Si)/hi. In all these cases 
the functional minimized can be expressed as positive definite quadratic form 
in local second derivatives with diagonal matrix of weighting coefficients. In 
case of function values and mean values interpolation we can express the spline 
continuity conditions as recurrences for the values Mj_i, M^, Mi+i and use then 
for minimization some techniques of quadratic programming (see Section 3). 
In case of derivative values interpolation the continuity conditions could not 
be expressed in terms of second derivatives and prescribed values only and we 
have to express the functional in terms of corresponding local parameters—the 
matrix of the quadratic form will then (and also in another cases discussed) 
have more general structure as will be shown in the following sections. 

Natural quadratic spline interpolating local mean values (with boundary con­
ditions rrio — mn+i = 0) gives minimum to the F2-norm of the spline first 
derivative (see [4], [5]). We can try to minimize this norm with quadratic 
splines interpolating function or derivative values. With direct computation or 
Simpson's rule (using piecewise linearity of the first derivative s'(x)) we obtain 
for Ji (s) the following expression in parameters m^ 

rXn+1 1 ^ i i 1 
Jx(s) = / [s'(x)fdx = - ] T hi(m2 + ra*rai+i + m-+ 1) = - m T R m (4) 

Jxo 6 i=o D 

with tridiagonal symmetric positive definite matrix R, which has the main 
diagonal 

diag(R) = [2ho, 2(ho + fci), • • , 2(ftn-i + hn), 2hn) (5) 

and subdiagonal [ho, hi, • • •, / in_ i, hn]. 

In case of the derivative values interpolation we can express this functional in 
terms of derivatives and function values—see Section 5. 

We shall consider also minimization of the discrete l^-norm of the vector m 
or its variation with weighting coefficients Wi—with functionals denoted here as 

n+l n+1 

j l d( s) = £ m 2 , J?>) = j > , i n ? (6) 
i=0 i=0 

in cases of the function and mean values interpolation. In case of derivative 
values interpolation the norm of g = [gi] is given from the data; the norm of m 
depends on one free parameter—its optimal value we shall consider in Section 5. 
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We can consider in some cases to minimize the functionals (spline norms) 

fXn + l U+l 

M*)= [s{x)fdx, or JZ(s) = Y,wisl (7) 
Jxo i=o 

under continuity and interpolation conditions expressed in proper local para­
meters. 

We can choose different local representations of a quadratic spline and we ob­
tain then the spline continuity conditions and mentioned functionals expressed 
in local parameters used. In some cases we have to use two different kinds of 
unknown parameters and we obtain then the continuity conditions expressed in 
terms of such local parameters. Then we have possibility to try to minimize 
some norm of the compound vectors as [s, m] or [m, M] . The different possi­
bilities in the choice of local parameters and corresponding algorithms will be 
presented in the following sections. 

2.3 Optimization algorithms used 
2.3.1 Pseudoinverse, explicit conditions for extremum 

The spline continuity conditions s^(xi — 0) = s^(x{ + 0), i = l ( l ) n , j = 0,1 
can be expressed in some proper spline local representation as an underdeter-
mined system of linear equations A p = b with some spline local parameters p . 
Its solution with minimal discrete (g-norm of p can be computed simply with 
pseudoinverse matrix as p = pinv(A) * b (Matlab notation for pseudoinverse is 
used; for proof see e.g. [8, p. 15]). 

In some simple cases we can express by induction directly the form of the 
dependence of some local parameters on its initial value and we can obtain then 
the necessary conditions of minima of Jk(s) as another recurrence between local 
parameters used. We can complete with such relation the system of continuity 
conditions and solve such regular system for optimal values of parameters used. 
The examples of such approach will be given in the following sections. 

2.3.2 Least squares technique 

The system of linear constrains in our optimization problem has special struc­
ture—we can consider the continuity conditions (three-term recurrences between 
local parameters of a quadratic spline) as a linear second order nonhomogeneous 
difference equation on the finite set of knots. We can compute some proper 
fundamental system of such equation and use it in algorithm for computing 
corresponding parameters of optimal solution. From stability and accuracy 
reasons we shall use the boundary value method (BVM) technique described 
in [9], [6] for stable computing of particular solutions of such equation. We 
describe here only basic idea of such approach in our case. 

Let us have the difference equation 

(AjVi + oiw+i + «22/i+2 = fi , i = 0( l)n - 1, (8) 



Optimal quadratic interpolatory splines on general knotset 77 

and denote the solutions of homogeneous (HE) and nonhomogeneous (NE) equa­
tion determined as solutions of boundary (or initial) value problems (BVP, IVP) 
under conditions: 

— u*e(HE), u] = l, ul=0, i^j; 

— uk e (HE), uk

k = 1, u1! = 0, |k - j \ > 1, i = 0(l)n + 1; 
— v e (NE), Vj =vk=0. 

Generally we can use initial conditions and forward or backward reccurences for 
computing particular solutions determined by two initial values (with [j, k] = 
[0,1] for forward recurrences). But there is the danger of instability in case that 
there are roots of the characteristic polynomial outside (inside) the unit circle. 
The boundary values problem can be stated and solved as corresponding linear 
tridiagonal system of equations which we obtain from difference equation (8) 
and BV given. So the indexes j , k have to be chosen according to the positions 
of roots of the characteristic polynomial of the difference equation in case of con­
stant coefficients. We can expect similar behaviour also in the case of slightly 
changing cofficients. 

In cases of constant coefficients of the characteristic polynomial of the (HE) 
with ki(k2) roots inside (outside) the unit circle the stable computation of par­
ticular solutions has to be done with ki(k2) prescribed conditions on the left 
(right) hand side (ki + k2 = 2)—see [9] (it gives the rule for choise of indices 
i,j above). Each solution of equation (8) determined by prescribed values yj,yk 
can be then written as y = y^ + ykuk + v. 

In our problem of optimal spline interpolation we search for the solution 
which minimizes some proper functional. If the functional minimized can be 
expressed as scalar product 

J(y) = J(yj,Vk) = (y,y)R = yTl&y 

with some positive definite matrix R, then the necessary conditions for optimal 
values y^yk giving the minimum to J(y) = J(y^yk) we can write as normal 
system of equations 

(uj,uj)R (uj,uk)R\ \yj\ = _ \(uj,v)R 

(uj,uk)R (uk,uk)R\ [yk\ [(uk,v)R 

(9) 

Remark 1 In the frequently used case of splines on the equidistant knotset 
the corresponding difference equation has constant coefficients on the left hand 
side—the matrix is symmetric, tridiagonal, diagonally dominant. The roots of 
the characteristic polynomial of (HE) are located one in the unit circle, the 
second outside the unit circle—see the following examples taken from splines on 
equidistant mesh and mentioned in the following (roots rounded): 

coefficients щ ЬІ Ci Z\ Z2 

special quadratic 1 3 1 -0.38 -2.618 
cubic, quadratic - MVI 1 4 1 -0.3 -3.7 

quadratic - FVI,DVI 1 6 1 -0.17 -5.828 
speciał geometric knotsets 1 6 2 -0.35 -5.65 

2 4 1 -0.29 -1.71 
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According to the above mentioned rule from [9], we set now j = 0, k = n + 1 
and compute v as the particular solution of (NE) with boundary conditions 
v0 = vn+i = 0 in a stable manner from the corresponding system of linear 
equations with diagonally dominant matrix. Any solution of (NE) determined 
by BC yo,yn+i can be then written as yj = C\z{ + c ^ . For j satisfactory big 
ve then obtain from BC 

yj » yoz{ + iLj —for small indices j on the left hand side, 
yj » y ^ + i ^ ^ - + Vj —near the right hand side. 

We can see that in such stably computed solutions the roots z\, Z2 influence only 
corresponding part of the "stationary" solution v and there is not the danger 
of instability, caused by forward or backward reccurences (see [9]). When we 
compute the particular solutions iL°,u n + 1 of (HE) as mentioned above (with 
j = 0, k = n 4-1), then for the coefficients ci,C2 computed from the normal 
system we obtain for large n approximately 

Ci^-(u°,v)R/(u°,u°)R, c2K-(un+1,v)R/(un+1,un+1)R. (10) 

2.3.3 Quadratic programming techniques 

We have considered the nonnegative minimized functionals till now and obtained 
special cases of diagonal and tridiagonal matrices of the quadratic form. In case 
that the functional J(s) has more complete structure of the quadratic form 
(linear terms, no definitness), we can use some known techniques of quadratic 
programming with equality constrains to find optimal values of optimal local 
parameters (see e.g. [1]). 

We have used the MATLAB function q p in some of our examples to compare 
the results with above mentioned more simple algorithms. 

We can use the classical technique of Lagrange's multipliers, too. Our typical 
problem can be stated as to find for given matrices R, A and vectors c, b 

m i n { m T R m — c T m ; A m = b} . 

The corresponding Lagrange's function with multipliers A is 

F ( m , A) = m T R m - c T m + A T ( A m - b ) . 

The components of optimal vectors A, m can be computed from the system of 
linear equations 

2R A т 

A O 
m 
Л 

(LM) 

3 Function values interpolation 

In this section we describe some local representations, corresponding continuity 
conditions and coefficients of the quadratic form for mentioned functionals Jk(s) 
in the FVI problem. 
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3.1 Norms of the second derivative minimized 
Given the knotset (x,t) with hi = #i+i — x;, ki = U+\ —ti and prescribed values 
9i — s(ti), the local representation with local parameters Sj, Mj = s"(tj) of the 
spline can be written as Taylor's expansion in x = ti 

s(x) = Qi + s'(U)(x - U) + -Mi(x - U)2 . (11) 

The value s'(U) can be computed from parameters Oi,gi+i,Mi,Mi+i (see [4]) 
using CC—e.g. in special case with #i+i = \(U + £i+i) for i = l ( l ) n — 1 we have 

s'(U) = ^-(Pi+i ~ gi) ~ g*i(3Mi + M m ) . (12) 

The first derivative continuity conditions we can then write generally as three 
term recurrences (see [3]) 

diMi-x + biMi + CiMi+l = fi , i = l ( l ) n - 1 (13) 

with coefficients depending on the geometry of the knotset 

&i = [(xi - ti-i)lki-ifki-il(ki-i + ^ ) > 0, (14) 

bi = {& - Xi)[l + (a?i - ^_ i ) /k i_ i ] 

+(zi+i - ri)[l + (r i + i - xi+1)/ki]}/(ki-.1 + ki) > 0 , 

Q = [(^i+i - ^+ i ) /k i ] 2 k i / (k i - i + ki) > 0, 

fi = 2[(Oi+i - 9i)/ki - (gi - g i - i ) / k i - i ] / ( k i - i + k i ) = 2[U-i, U,ti+l]g. 

In the special case of Xi+i = |(£i + ^+i) these expressions for coefficients can 
be simplified to 

a* = ki_i/(ki_i + ki) , bi = 3, Ci = 1 - ai, / i = 8[ri_i,^,^i+i]a. (15) 

Let us denote as A the tridiagonal (n — 1, n + 1) - matrix and f the vector of the 
right hand side of the system (13) with components given in (14), M = [Mi]. 
Then the problem to find quadratic interpolatory spline with minimal L2-norm 
can be stated now as the problem to find parameters M;, for which 

n 

J2(s) = y] hjMf -» min under conditions A M = f. (16) 
i=0 

This formulation contains formally also the problems of minimizing functionals 
J-2d(s), J2d(s)' On the equidistant knotset with hi = h (or in case of J2d(s)) we 
can find the optimal values Mi simply using pseudoinverse solution approach to 
the system of CC (13). When we have ki = k, i = 0(l)n, then the coefficients 
on the left side of the recursion (13) are constant and equal to [1, 6, 1]. Then we 
can use LSQ algorithm with particular solutions computed from linear systems 
(CC recurrence relations) stemming from corresponding BVP. On the general 
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knotset the sufficient condition for the full rank of the matrix A can be written 
with rj = (XJ — tj-i)/kj-i as the knotset regularity condition (not satisfied in 
cases that U -> Xi,Xj+i) 

rl + rl+l < hi + fa - xi)ri + (*i+l - ^ i + l ) r i + l . (RC) 

Generally the quadratic programming algorithm have to be used. 

Theorem 1 There exists just one solution of the optimization problem (16) 
under condition (RC). Specially, there are unique quadratic interpolatory splines 
minimizing functionals J2d(s), *I2d(5)- The optimal values of corresponding 
local parameters Mi we can find using quadratic programming algorithm to the 
problem (16), special LSQ approach (constant coefficients in CC) or Moore-
Penrose pseudoinverse in case of hi = h. 

Proof follows from positive definitness of J2(s) and structure (diagonal domi-
nancy) of the matrix A in (16). 

Remark 2 The case mentioned in (15) contains an interesting case of so called 
geometric knot sets with ki forming geometric sequence—we obtain in such 
nonequidistant case the constant coefficients on the left side of (13); see the 
examples in last two rows in the table of roots. 

Example 1 For the monotone testing data on the equidistant knotset we can 
see the similar results of interpolation with natural cubic spline and optimal 
quadratic spline (with knots in midpoints) on Fig. 1. The values of norms of 
the vectors of the second derivatives are [32.62, 32.60]. 

50 

40 

30 

20 

10 

monotone data * interpolated 

- with cubic natural spline (full line) 

- with optimal quadratic spline (dotted) 

equidistant knotset 

x=-0.5:1:20.5, t=0:1:20 

0 2 4 6 8 10 12 14 16 18 20 

Fig. 1 
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3.2 The first derivative used and Ji, J2 minimized 

We can also use the spline local representation with parameters gj,nij and with 
local variable u = (x — Xi)/hi and parameter di = (U — Xi)/hi 

s(x) - gi + hi(u - di)[(2 - u - di)mi + (u + O^)rai+i]/2 . (17) 

The continuity conditions we can write now as recurrences 

dimi-i + bimi + Cimi+i = fi, i = l ( l ) n (18) 

with coefficients depending on the geometry of the (x, t)-set and given as 

di = /Li_i(l - di„i)2 > 0, Ci = dffhi > 0, fi = 2(# ~ gi-i), 

6i = M i ( 2 - d i ) + / ^ - i ( l - 4 _ i ) > 0 . (19) 

The dominance of the middle coefficient in recursions (18) can be easily recog­
nized for all dj G (0,1). In equidistant case with hi = h, di = \ we obtain 
again on the left hand side of CC the coefficients [1,6,1]. In case of the geo­
metric knotset with hi = chi-\, di = 1/2 these coefficients are [1,3(1 + c),c]. 
The functional J2(s) (the norm of the second derivative) we can write now in 
parameters m; as 

n n i 

J2 (s) = ]T] hiMf = Y1T. (mi+1 ~ m*)2 

n 1 

y ^ T - ( ^ 2 - 2mimi+i + m2
+ 1) = m T Q m (20) 

i=0 

where (singular) symmetric positive semidefinite tridiagonal matrix Q has 

diag(Q) = [fto1, h^ + h^r-^h-^ + h"1, h'1] 

and subdiagonal [— ô"1? '", ~nn1]- (21) 

We can try to use the LSQ algorithm to find optimal values of local parameters 
mi minimizing J2(s), or to use (LM) approach (the existence and uniqueness of 
such minima were proved in Theorem 1). 

The minimization of the F2~norm of the spline first derivative leads us to 
the functional 

Ji (s) — - m T R m 

with the positive definite symmetric tridiagonal matrix R described in (5) and 
with equality constrains (18). We can use for minimization of J\(s) the men­
tioned LSQ approach to find optimal values of parameters m*. This approach we 
can use also for minimization of weighted discrete l^-norm with J™d. For min­
imization of the functional J\d(s) we can use simply pseudoinverse approach 
with the matrix described in (18)-(19). The results obtained we can summarize 
in the following Theorem. 
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Theorem 2 There exist unique FVI quadratic splines which minimize Junc­
tionals J\(s), Jid(s), J\d(s) under corresponding continuity conditions (18). 

1 1 1 

* - data interpolated 

1 1 1 1 1 1 

V 
/ - with optimal quadratic spline (dotted) 

\ / - with cubic natural spline (full) 

1 1 1 

general FVI problem on equidistant set 

i i i i i i, 

0 2 4 6 8 10 12 14 16 18 20 

Fig. 2a 
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- 5 
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first derivatives of cubic and quadratic interpolants 

0 10 

Fig. 2b 
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15 

10 

-10 

-15 

natural cubic - full line 

second derivatives of cubic and quadratic interpolants 

Example 2 The results of discrete data interpolation with natural cubic spline 
and quadratic spline with minimal (g-norm of the vector m of the first deriva­
tives and spline knots in midpoints are plotted in Fig. 2a. The first and sec­
ond derivatives of that interpolatory splines are plotted on Fig. 2b, Fig. 2c 
and demonstrate closeness of these interpolants. Similar result we obtain with 
quadratic spline with minimal fe-norm of the vector of the second derivatives. 

3.3 Funct ion values used and minimized 

The another local parameters Sj, 9j are used in the local spline representation 

/ N /-. v / i u \ u — di u(l — u) 

s{x) = (1 - «)(1 - -)Si + UJ-T--J-H.1 + 40=%* • 

The corresponding continuity conditions for the first derivatives are 

(22) 

1 - dj-i 

hi-\d% 

Si-l + 
г-1 

di-i 

hi-ľ(l -di-i) 
+ 2 

+ 
di 

ҺІ(1 - di) 
Si+l = 

9i-i 

1 

ҺІ-I 

+ 

hij 

| + i-4 
' Ыdi 

9i 

hi-idi-\(l - di-i) hidi(l - di) 
(23) 

The middle coefircient is dominating for dj 6 ( ( - 1 + V^)/2, A/2/2). In case of 

all di - i *+ 
2 it simplifies to recurrences 

hi-

1 0 / 1 1 \ 1 A (9i-i . 9i\ 

- 7 S i - 1 + 3fc + W S i + r i + 1 = 4 fc + U (24) 
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with symmetric entries, in equidistant case again with coefficients [1, 6, 1] on 
the left side. (For knots Xi forming the geometric set we obtain the coefficients 
[c, 3( l+c) , 1] here.) Given values Oj, we can find the local spline parameters Sj 
giving minimum to the functional Jod(s) described in (7) using pseudoinverse 
approach for CC given in (23) or (24); for the functional Jod(s) we can use here 
the LSQ approach. 

For the value of the functional Jo(s) we obtain from (22) after some compu­
tation the formula 

rxn+1 

Jo(s) - \ [s(x)] dx 
n X° 

1 u 
= 30 - £ d2(l-d)2^ + Cl9iSi + C29iSi+1 + C 3 ^ + c±SiSi+l + C 5 5 H-I ] (25) 

with coefficients Ci depending on the knotset parameters di as 

Cl = - 2 + 7 ^ - 5 d f , 

C2 = (3 - hdi)di, 

c3 = 1 - 7di + 21d? - 25df + lOdJ, (26) 

c4 = ( - 3 + lMi - 20d| + lOd^di 

c6=d2(6-l5di + 10d2) 

(for di E (0,1) there is c3 > 0, c5 > 0, C4 < 0, the coefficients ci ,c2 change sign 
here). In special case of di = | we obtain more simple formula 

1 n 

j ° ( s ) = 15 - C h*$9i + 2gi(^i + *<+i) + 2s2 + 2s2
+ 1 - siSi+1]. (27) 

z=0 

with symmetric positive definite matrix of the quadratic form. Using the local 
parameters gj, mj we obtain for di = \ and this local representation quadratic 
form with symmetric positive definite matrix 

n 

Ms) = Ylhi [9^ + 12^igi(mi+l ~ mi) 
i=0 

17 23 1 
+ 4 ^ ' m * m i + i + 9 6 o ^ ( m ? + m ? + i ) j ' C28) 

Remark 3 The matrix of the quadratic form in (27) belongs to M-matrices; 
in (28) we can recognize tridiagonal symmetric diagonally dominant matrix 
there. In the general case (25) we can find no simple quadratic form and the 
quadratic programming approach shall be used. 

Theorem 3 There exist local parameters s = [s^ of the quadratic FV interpola­
tor splines which realize the minimum of functionals Jo(s), Jod(s), Jod(s) under 
equality constrains (23). We can find them using corresponding techniques of 
QP, LSQ or pseudoinverse. For di = 1/2 and in some its neighborhood the 
optimal spline is unique. 

Remark 4 The solution of Example 2 with minimal (g-norm of s is close to 
that on Fig. 2a for all but last two points where it takes values about [68, 10]. 
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3.4 Another cases 

We can use also the local representation with parameters gi,mi, Mi which with 
local variable u = (x — ti)/hi, di = (ti — Xi)/hi reads 

s(x) =gi + hi(u - di)m{ + -h2(u2 - d2)Mt. (29) 

The corresponding spline continuity conditions we can write now as 

mi - mi+1 + hiM{ = 0, i = 0(l)n (30) 

l-h2{\ - dj)Mi + \ì ҺІ{1 - di)mi + hi+idi+1mi+i + -h2(1 - Ą)MІ + -h2

i+1d
2

i+1Mi+1 = gi+1 - ÇІ . 

We have obtained block system of linear equations for two kinds of unknown 
local parameters mi, Mi. We can use pseudoinverse approach to find optimal 
values of mi, Mi which minimize the /2-norm of the vector [m, M], or the LSQ 
approach with stable manner of computing of particular solutions of the the first 
order systems of linear difference equations described in [9] or [6]. We can use 
also the general algorithms of quadratic programming for another functionals 
considered. We can even simplify the system (30) when we eliminate some of 
parameters from the more simple first relation. We obtain then the reduced 
system of constrains in one of the forms 

[hi(l - di) + hi+1di+1] mi + h 

1 

-fri(l - d2) + hi+1di+1 MІ 

+ ^h2

+1d
2

i+1Mi+1 = gi+1 - Qi, (31) 

hi(l - di)mi + hi+1di+1(l - -di+1)mi+1 + -hi+1d
2

+1mi+2 

+ l-h2{l-d2)Mi=gi+1-gi. (32) 

Now we apply the algorithms to one of these reduced system and we can compute 
the solution with smaller computational costs. The eliminated parameter we can 
compute then from (30). 

When we eliminate parameter Mi from (30), we obtain the CC written in 
(18), (19). Similarly we can work with local parameters [g, m], [g, M ] . 

4 Mean values interpolation 

4.1 Second and first derivative used and minimized 

In the mean value interpolation (MVI) problem we are given the mean values 

1 fXi + l 

Qi = T~ / s(x)dx, i = 0(l)n (33) 
hi Jxi 
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to be interpolated by quadratic spline on the knotset x. We can use the spline 
local representation 

s(x) = Qi + h{(u - -)mt + -h2(u2 - -)Mi (34) 

and obtain the spline continuity conditions as the system of recurrences 

2 1 
himi + hi+1mi+1 + -h2Mi + -h2

i+lMi+1 = 2(gi+1 - g{), i = 0(l)n - 1 

-mi + mi+1 = hiMi, i = 0( l)n. (35) 

We can use pseudoinverse approach to this four block matrix to find optimal 
values of parameters mi,Mi giving minimum to the l2-norm of the vector [m,M]. 
We can again eliminate some of parameters to obtain smaller underdetermined 
system for these local parameters—e.g. one of the following 

2 1 2 
himi + -hi+1mi+1 + -hi+1mi+2 + -h2Mi = 2(gi+1 - #*), (36) 

himi + 5hi+1mi+1 + h2
i+lMi+1 = §(gi+1 - g%), i = 0( l)n - 1. 

The computations with pseudoinverse will be more efective now. The undeter­
mined parameter we can compute from (35). 

When we eliminate the parameters Mi from (35), we obtain recursion in one 
parameter only, which will be given in (42) more easily with the use of proper 
local representation. 

With the local representation 

s2(x) = (1 - 2u)s{ + 2ugi + -h2u(-2 + 3u)M{ (37) 

we can obtain the system of continuity conditions 

1 2 
st + si+1 - -h2Mi = —gi, (38) 

-~Si + T^-Si+i + \hiMi + \hi+1Mi+1 = (f-±i - | i j . 
tii hi+1 6 o \ t ^ + i fit J 

In equidistant case we can eliminate one parameter and simplify it to 

si+1 + -^h2(Mi + Mi+1) = ^(9i + gH-i), (39) 

(si = 2 ( 3 # - ffu-i) + Y 2 / l 2 ( 3 M i + M * + ! ) ) ' 

We can eliminate parameters Mj and obtain recurrence (45), which will be 
obtained by more simple approach. When we eliminate parameters sil we obtain 
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the CC expressed in parameters Mi only; with notation Cj = (hj + ftj+i) l we 
can write the result as 

Ci_i/i2_iMi_i + hi [ci-ihi-i + 1 + Ci/ii+i] Mi + Ci/i2+1Afi+i (40) 

= 6 [ci_i#i_i + hJl(-2 + Q_i/ii_i + Ci/ii+i)ai + Qgi+i] . 

In equidistant case we obtain simple recursion 

-(Mi_i + 4Mi + Afi+i) = ^(g i_ i - 2^ + 0i+i). 

The sufficient condition for the dominance of the central coefficient in the general 
case and full rank of that matrix is 

Ci_i/Li_i(/Lj - / i i_i) + /Lj +Ci l i i+ i ( / i i - ^ t + i ) > 0> (DC) 

which is not satisfied e.g. in case of hi+i/hi = hi-i/hi = 2. The unique optimal 
parameters M for J2d(s), J2(s) we can compute with the pseudoinverse or LSQ 
approach for full rank matrix in (40), generally with QP algorithm. 

To find parameters raj which minimize the functional J2(s), we can use the 
quadratic form (20) and local representation 

s(x) =9i + -hi(-2 + 6u - 3u2)mi + -hi(-l + 3u2)ra,;+i. (41) 
o o 

The spline continuity conditions can be written now simply as 

hi-irui-i + 2(fti_i + hijrrii + himi+i = 6(& - gi-i), i = l(l)n (42) 

and LSQ approach for minimization of J"2(s), J2d(s)^2d(s)^ o r pseudoinverse ap­
proach for J\d(s) can be used. The constant coefficients [1, 4, 1] or [1, 2(l+c), c] 
we obtain on the left side of (42) in case of constant step size hi = h or steps hi 
forming geometric sequence. 

Using local representation (41) we obtain for functional J\(s) to be mini­
mized the identical result as in (4)— 

pXn + l -I n 1 

Ji(s) = / W(x)] dx = - Y] hi(m2 + rriimi+i + m-+1) = - m T R m (43) 
J*o 6 i=0 ° 

with the tridiagonal symmetric matrix R given in (5). For minimization of Ji (s) 
again the LSQ approach and continuity conditions (42) have now to be used. 

For the functional J2(s) we obtain result given in (20) for FVI. 
The local spline representation 

s(x) = (1 - Su)(l - u)si + u(3u - 2)si+i + 6w(l - u)g{ (44) 

results in the following spline continuity conditions (see (24)) 

srr8'-+2 ( _ + i) - + r<« -3 fe+1) • ' = l ( 1 > " - (45) 
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The functionals Jp(s) can be expressed in local parameters Si,9i as 

J2(s) = 36 ] T -3 (5 < + ««+i - 2<^)2, 
ft? 

Л ( 5 ) = X ľ T - 3 ^ ~ S9i(Si + «ť+l) + S- + SѓSѓ+i + s2

i+1] , 
i=0 г 

(46) 

(47) 

1 
J°(*) = 15 _C ^ - 1 8 ^ 2 ~ 3 ^ ( 5 i + s * + l ) + 2 s * + 2 s ^ + i ~ s ^ + 1 - * ( 4 8 ) 

i=0 

We can recognize the diagonal dominance in the corresponding SPD matrices 
of this forms for p = 0,1 (singularity for p = 2 can cause nonuniqueness of the 
minimizer). So we can use pseudoinverse approach to minimize Jod(s), LSQ 
approach for J^(s) and QP algorithms for Jp(s) under constrains (45). 

Theorem 4 There exist unique MVI quadratic splines which minimize func­
tionals Jo(s), Jod(s), Ji(s), Jid(s). J2d(s), J2OO under corresponding continu­
ity conditions (resp. (DC) for J2(s)). 

Proof follows from positive definitness of corresponding matrices (see (2), (5), 
(48)) and full rank of matrices in CC (40), (42), (45). 

Example 3 The results of the interpolation of the histogram on the nonequidis-
tant knotset with quadratic spline with minimal (g-norm of the vector m and 
minimal F2-norms of the first and second derivatives are plotted on Fig. 3. We 
can see small differences in the middle intervals and diffferent behavior at the 
boundaries (according to the norms minimized). 
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5 Derivative values interpolation 

In the problem of the derivative values interpolation (DVI) on the knotset x,t 
the values </$ = s'(U), i = 0(l)n are prescribed. There are some special features 
in case of di = \ (see [7]) which we have to consider. The quadratic DVI spline 
depends generally on two parameters and so we can again search for optimal 
spline minimizing given norm or another functional. 

5.1 Second derivative used, minimized 

We can try to use the Taylor's local representation similar to (11) with known 
values sf(ti) = giy di — (ti — Xi)/hi and unknown local parameters s(U), Mf, 
u = (x — Xi)/hi (mention some differences in notation) 

s(x) = s(U) + hi(u - di)gi + -h2(u - di)2M{ (49) 

and we obtain the spline continuity condition as the recursions 

-s(U) + s(ti+i) - -h\(l - difMi + \d2

i+1h
2

i+1Mi+1 

= hi(l - di)gi + di+1hi+1gi+1 , i = 0(l)n - 1, (50) 

/ii(l - di)Mi + di+1hi+1Mi+1 = gi+1 - gi. 

We can use the pseudoinverse approach to find vector [s, M] with minimal 
fe-norm. We can eliminate one parameter and obtain the reduced system of 
constraints—e.g. 

-s(U) + s(ti+1) - -ht(l - dt) [/ii(l - di) + di+ihi+i] M{ 

ҺІ(1 -dг) - -di+1hi+1 9i + ҡdi+1hi+1gi+1 (51) 

and to use pseudoinverse approach to that reduced matrix. 
More simple CC system we obtain using the local representation 

s(x) = Si, + hiugi + -h2u(u - 2di)Mi. (52) 

We can again search for vector [s, M] with minimal norm under spline continuity 
constrains 

Si - si+1 + -h2(l - 2di)Mt = -higi, (53) 

hi(l - di)Mi + di+1hi+1Mi+1 = gi+1 -gi, i = 0( l )n - 1. (54) 

In both representations the first derivative CC in (50),(54) is identical and does 
not contain parameters Sj. It follows in both representations from the fact, 
that the spline we search has two free parameters: one value of the second 
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derivative Mj (which influences the value of our functional) and one function 
value Sk, which causes some shift of the graph of the spline and don't influence 
the functional. So for minimization of J2d(s) we can use some separation e.g. 
in the following algorithm: 

1) Compute optimal values of parameters M with pseudoinverse solution of the 
system (54); 

2) Compute values s from CC (50) or (53) with known parameters M . 

In the special case of di = \ the CC (53), (54) have simple form 

si+1 - s{ = higi, hiMi + hi+1Mi+1 = 2(gi+1 - gt) (55) 

and by induction we obtain 

3 

hjMj = (-l)jh0M0 + Y^ci9u dM3/dM0 = (-l)jh0/hj 
i=0 

and the necessary condition of minima of the functional J2(s) = ^h^Mf, 
dJ2(s)/dM0 = 0 completes the system of second part of CC to the regular 
system 

n 

hiMi + hi+1Mi+1=2(gi+1-gi), i = 0(l)n - 1, ^ ( - 1 ) ^ = 0 . (56) 

When we compute optimal values Mi and choose the free parameter s0, the 
remaining values Si we can compute from the first recursion in CC (55). 

Similarly we can treat the case with the functional J2d(s)-

Theorem 5 There exist the unique values ofM. for the DVI quadratic spline 
which minimize the functionals J2(s),J2d(s) and unique vectors m , M with 
the minimal value of the l2-norm of the vector [m, M ] ; the optimal splines are 
determined till the additive constant. 

5.2 First derivative used and minimized 

The first derivative mi = s'(xi) is used in local representation 

1 \ h 
s(x) =8i + hiull- ~ w \mi + wvu29i. (57) 

The system of spline continuity conditions can be written now as 

si+1 -Si ( 1 \ 1 , 
+ oX - 1 )mi = Trrg i , (58) hi \2di ) 2di 

(1 - di)m,i + dimi+i = gt, i = 0(l)n. (59) 
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We can see again the appearance of parameters mi only in the first derivative 
CC . Eliminating the parameter gi we can reduce the system to 

2 
rrii + ra*+i - T- (**+I ~ Si) = 0, i = 0(l)n. (60) 

n% 
We can use now the pseudoinverse approach to search for the vector [s,m] with 
minimal /jg-norm. 

The relation (59) demonstrates the dependence of values m^ and the func­
tional J\d on one such a parameter only. We can choose mo, to follow analyti­
cally the dependence of m^ on mo with the result 

k k 

mk+i = m0 J | ( l - dTl) + ] T CiQi 
i-Q i=0 

and write down the necessary condition of minima of the functional Jid(s) as 

n+l i-1 /n+1 1 \ 

J2miIi(1-dJ1)=° ( £ ( - - ) * " » < = 0 in case * = - ) . (61) 
i=0 j=0 \i=0 / 

This equation completes the system of CC (59) for computation of parameters 
mi to the regular system of equations. The parameters Si then we can compute 
recursively from given value so and (58). This approach can be easily extended 
to minimize J™d(s). 

More simply, we can use pseudoinverse approach to compute optimal values 
mi from (59) , choose s0 (the second free parameter) and then to compute $*, 
i = l ( l )n + 1 recursivelly from (58). 

For the spline second derivative we obtain from (57) s"(x) = hi(gi — m^jdi 
and then 

Ms) = fy\s"{x)fdx = J2 ( I ) ' (Si ~ mi)2, (62) 

which we can minimize again under conditions (59) (unique solution) and then 
compute values Si from (58). 

The functional Ji(s) = | m T R m we can minimize under conditions (59) 
using LSQ technique and then compute s from (58). For functional Ji(s) we 
can from (57) also obtain 

Ms) = ±hi[(i-}i + ^m
2-j-(i + ̂ 9imi + ^ (63) 

with positive coefficients at mf for di 6 (0,1). So we can use QP technique with 
respect to conditions (59) to find optimal value of m^ minimizing Ji(s). 

For the values of J0(s) we obtain with (57) and (58) 

i n n r i 

JbM = ™ Yl hU8ml + 9m*mi+l + 3mi+l) + XI Hi S^ + ohiSi(2mi + m^+l) 60 + „ 
г=0 i=0 (64) 
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For its minimization under conditions (60) (both parameters Si.nrti unknown) 
we can use QP approach. 

Theorem 6 There exist the unique values of m for the DVI quadratic spline 
which minimize the functionals Ji(s), Jid(s). The optimal splines are deter­
mined till the additive constant. 

5.3 Function values used and minimized 
In case of di ^ \ we can use the local representation of DVI spline 

, / NX , / x u(u — 1) , , . u(u — 2dA . ^ 
s(x) = (1- b(u))si + b(u)Si+i + g

v _ ^ 9 i l b(u)= \ _ 2 d * . (65) 

The spline continuity conditions can be written (see [7]) as the system of recur­
rences 

-a.*-! + (a, - bi)Si + biSi+1 = \ {jMj^-l + T^d) ( 6 6 ) 

with coefficients 

I (*i—l i &Í (f{7\ 
a i ~ / i ť _ 1 ( l - 2 ( i i _ 1 ) ' " ' " M l " - * ) " 

The functionals considered we can write now as 

*<»> = 4 Ż Щ ^ <•*--«-*)', < 6 8 ) 
ѓ = 0 

n -

зд = ££ 
i=0 г 

(ŐІ - s ;+i) 2 + ~(gi - SІ + 5ѓ+i) 2 /(l - 2diУ (69) 

J°( s) = J21| t 1 2 * 2 + 2 s 2 + i + S i 5 i + i + (9s* + *+i )# -" ^2- (7°) 
2=0 

for di = - (too lenghty in general). 

The approximation of the norm of the spline curvature (s'(x) » gi) is given as 

n 

Jc(s) = 4 J2 Wi(si+i -Si- ft)
2, ^ " 1 - fc?(l + g2)3(l - 2^i)2. (71) 

i=0 

In the special case of di = 1/2 we can find from the recurrence Si+i = Si+ht9i 
by induction 

j 

8j+i - __](sj + hjgj), dsi/dso = 1. 
i=0 
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For the functional Jod(s) = Jod(so) we can write the necessary condition of 
minima dJod/ds0 = 0 and to complete thus the system of CC to the regular 
system of equations for computing optimal function values Si 

n+l 

-Si + s*+i = hiQi, i = 0(l)n, y ^ Si = 0. 

Theorem 7 T/We e:ris£ quadratic DVI splines which minimize Junctionals Jo(s). 
Jod(s). For Jo(s) and di = | . Jod(s) with di = | and problem with minimal 
norm of [s, m] we /iaue £/ie unique solution. 

E x a m p l e 4 For the function /(.r) = x * sin(x) and 

x = 0 : 0.5 : 10, t = 0.25 : 0.5 : 9.75, 

and values Qi computed exactly from / (# ) , the DVI quadratic interpolatory 
spline with minimal value of Ji(s) and SQ = f(xo) is plotted in Fig. 4. The 
plots of / ( x ) , s(x) are nearly identical, with differences in the function values of 
the order 10~2. The results for splines with minimal values of Ji(s), J2d(s) and 
5(0) = 0 are identical to four decimals, spline sO with minimal value of Jod(s) 
is shifted down at about 0.6 (corresponding norms of f, sO, s are 17.46, 17.42, 
17.66). 

ю 

Optimal DVI with quadratic spline 

x=0:0.5:10, t=0.25:0.5:9.75 

f(x)=x*sin(x) 

f(x) ~ s(x) 
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