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Abs trac t 

In this paper, we consider a variant of the isoperimetric inequalities in 
lattices. We give a precise description of the polyominoes on the honey­
comb lattice which maximize their area for a fixed perimeter. 

From this characterization, we can give the 'explicit' values of the 
smallest perimeter of a polyhexe with a fixed area. This last problem 
corresponds to the usual isoperimetrical problem. 

Moreover, we propose to apply our characterization in order to solve: 
Find the minimum density of unit hexagon to be placed on the honey­
comb lattice so that to exclude all polyhexes of a fixed area. Using our 
characterization we solve this last problem for some values of the fixed 
area. 

K e y w o r d s : Ti ling, isoperimetrical inequality, hexagonal lat t ice. 

2000 M a t h e m a t i c s Subjec t Classif ication: 52C99 

1 Introduction 

We denote H to b e t h e well-known Hexagonal lat t ice (see [5]). In this paper , a 
polyhexe is a finite set (not necessarily connected) of uni t hexagon placed on % 
(see [6]). T h e interior boundary 6int(P) of a polyhexe P is t h e set of hexagons 
of P having a c o m m o n edge wi th t h e 'exterior ' of P. T h e exterior boundary 
6ext(P) of a polyhexe P is t h e interior b o u n d a r y of t h e complement of P. T h e 
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perimeter of a polyhexe P is \5int(P)\. For a given polyhexe P , A(P) denotes 
the area of P (that is, |P | ) . 

Consider the adjacency relation a, which defines what is usually called 6-
connectivity in Discrete Geometry, between unit hexagons in ri: we have HaH' 
iff H and H' have a common edge. 

Here, we are interested in the following question (Q): Suppose we are given 
a positive integer n. What are the polyhexes of perimeter n with maximal area? 
This question was solved for the square lattice in the 2-dimensional case [7]. 

Problem (Q) is related to an isoperimetrical problem (P): What is at least 
the perimeter of a polyhexe of a given area? This last question was first settled 
in Z n for any n by D.-L. Wang and P. Wang [10]; an alternative proof is pro­
posed by B. Bollobas and I. Leader [2] in order to generalize Harper's theorem. 
Nevertheless, these results do not give any information on the 'shape' of the 
optimal polyominoes (for instance uniqueness of the minimal shapes for specific 
values of the area). That is why the authors in [7] proposed the alternative 
question (Q) and they obtained a characterization of the 'shapes' of the optimal 
polyominoes in the 2-dimensional case. Here, we adopt the same approach in 
order to solve question (Q) in the Hexagonal lattice. L. Alonso and R. Cerf [1] 
solved the question (Q) in Z n (for n = 2 and 3) for another kind of perimeter: 
the length (in Z2) or the area (in Z3) of the boundary 

In Section 2, we solve (Q) m ri. In Section 4, we propose an application 
of this result in order to solve: Find the minimum density of unit hexagons 
to be placed on ri so that to exclude all polyhexes of a fixed area. This kind 
of problem was also investigated in Z in [7]. In this case, this is related to 
Pentomino Exclusion Problem due to Golomb [6, 3, 4, 8]. Our characterization 
of isoperimetrical shapes allows to solve this problem for some values of the 
fixed area. 

2 Maximizing the area for a given perimeter 

The proofs of results mentioned in this section are given in the next section. 
We need to introduce some preliminary definitions (see Figure 2). For a given 
polyhexe P , we can associate the graph G(P) = (V,E) defined by V = {v 
center of a unit hexagon in P } and E = {uv\u and v are the centers of two 
unit hexagons Hu and Hv respectively of P such that HuaHv}. A vertex v of 
G(P) can be seen as a unit hexagon of H, denoted by Hv. Moreover G(ri) is 
usually called in discrete geometry language the triangular lattice which can be 
spanned by the vectors (1,0) and ( —1/2, \ /3/2) . Then: 

• The interior shape (exterior shape respectively) of a polyhexe P is the 
graph Gint(P) = G(Sint(P)) (Gext(P) = G(6ext(P)) resp.); 

• An isolable hexagon u o f a polyhexe P is a hexagon u G 8int(P) belonging 
to a connected component of P not reduced to u and such that all its 
neighbours in P belong to 5int(P). 
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Figure 1: A flower. 

• The undress operator applied to a polyhexe P gives the polyhexe 

UD(P) = P-6int(P). 

For q > 1, we denote UDq(P) = UD(UDq~l(P)) and by convention 

UDl(P) = UD(P). 

• The flower is the polyhexe F such that UD(F) is a unit hexagon (see 
Figure 1). 

The undress operator in Z was first introduced in [7]. 
Observe that if u is an isolable hexagon of a polyhexe P then for any v G H — 

(PU8ext(P)), the polyhexe Q = (P-u)U{v} satisfies \5int(Q)\ = \5int(P)\ and 
A(Q) = A(P) ; moreover v is not an isolable hexagon of Q. For a convenience, 
let Pn be a polyhexe with perimeter n which maximizes the area. 

Figure 2: A polyhexe P , the graphs Gint(P) and Gext(P), and the polyhexe 
UD(P). Each unit hexagon of UD(P) is an isolable hexagon. 

Theorem 1 A Pn consists ofn distinct unit hexagons whenever n G { 1 , . . . , 5}. 
PQ is a flower (see Figure 1). P- consists of a disjoint union of a flower and a 
unit hexagon. 

If n = 6q + r > 8 and 0 < r < 5, then Pn is unique and is obtained by 
UDq(Pn) = Hr where Hi is the polyhexe described in Figure 3. 



82 Sylvain GRAVIER 

нo oco 
H2 HЗ 

Figure 3: Extremal configurations. 

Theorem 2 The area of Pn with n = 6g + r > 0 and 0 < r < 5. is given by the 
following function: 

A(^Pn) = 

Зg2 + Зg + 1 if r = 0, 
Зg2 + 4g + l ifr = 1, 
Зg2 + 5g + 2 ifr = 2, 
Зg2 + 6g + 3 if r = 3, 
Зg2 + 7g + 4 if r = 4, 
Зg2 + 8g + 5 i/r = 5. 

In order to describe the shape of an optimal polyhexe, we need some addi­
tional definitions. 

Figure 4: Type of edges in G. 

A cycle in a graph G is a sequence of vertices vo>^i,^2, • • • ,Wfc such that 
i W + i (the indices have to be read modulo k) is an edge of G for a l i i = 1, . . . , k. 
A chord in a cycle Vn,..., Vk is an edge V{Vj with j ^ i + 1. 

Let K = (1,0), Y = (l/2,>/3/2) and Y = ( - 1 / 2 , ^ / 2 ) . Observe that there 
are six type of edges in G(H) (see Figure 4): 

• A left edge of G('rt), denoted by /, is an edge uv where v = u + Y; 

• An anti-left edge of G(H), denoted by Z" 1, is an edge uv where v = u — Y\ 
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• A right edge of G(rt), denoted by r, is an edge uv where v = u + Y; 

• An anti-right edge of G(ri), denoted by r " 1 , is an edge uv where v = u—Y; 

• A horizontal edge of G(ri), denoted by li, is an edge uv where v = u + X\ 

• An anti-horizontal edge of G(rl), denoted by / i " 1 , is an edge iw where 

v = u — X. 

Observe that a cycle of G can be completely characterized by a circular word 
(in a clockwise orientation of the cycle) on the alphabet {/, r, h, Z""1, r " 1 , li"1}. 

Theorem 3 If n = 6q + r > 8 and 0 < r < 5, £ften Gint(Pn) is a cycle which 
can be described by the words: 

hqlqr-qh~ql-qrq ifr = 0 
hq + llqr-qh-ql-q-lrq-l {f f = -_ 

hq+llqr-qh-q-ll-qrq {f f = 3 
hqlq+lr-qh-q~H-qrq-1 ifr = 3 

hq+llq+lr-qh-q-ll-q-lrq {f f = 4 

hqlq+2r-qh-q-ll-q-lrq+l jf f _ 5 

3 The proofs 

Among all polyhexes P n , choose a polyhexe P which has a maximum number 
of connected components. Let G = G(P),Gint = Gint(P) and Gext = Gext(P). 

A vertex cutset in a graph G is a vertex v such that G — v is not connected. 

Lemma 1 Any connected component of G has neither isolable hexagon nor 
vertex cutset. 

Proof First assume that a connected component of G has an isolable hexagon 
D, and let u be a unit hexagon of rl — (P U Sext(P)). Then the polyhexe Q = 
(P — u) U {v} has the same area, the same perimeter and one more connected 
component than P , contradicting the maximality of P . 

Let G be a connected component of G. So, we may assume that G has 
no isolable hexagon. Suppose now that v is a vertex cutset of G. Remark 
that v € Sint(C). So we may assume, up to rotation, that v + X $ C. Since 
by assumption v is not isolable, we have that there exists a vertex u in the 
neighborhood of v which is not in the interior boundary of G. Since v is a 
vertex cutset and since v -f X & G, we may assume without loss of generality 
that u = v — Y. And so v + Y and v — X belong to G and v — Y £ G. 

Let Ci and G2 be two connected components ofC — v such that v + Y,v — X 
and u e G2 and D -f Y G Gi. Remark that <5ext(Gi) D <5ex*(G2) = {U}. Consider 
now the polyhexe (Q obtained from P by removing n from G, translated Gi by 
the vector —Y and adding some possible unit polyhexes (at least one to replace 
u) in H — (P U 5ext(-D)) i n order to have |<.w(Q)| = \Sint(P)\. The resulting 
polyhexe has the same perimeter, the area greater or equal to P and more 
connected components than P , contradicting the maximality of P . • 



84 Sylvain GRAVIER 

Lemma 1 shows us that any connected component C of G has no isolable 
unit hexagon and no vertex cutset. Using this assumption, we will study the 
geometrical shape of a connected component of G. 

We consider two types of configuration described in Figure 5: 

• A oblique 3-path is a path (a,u,b) G Gint such that, up to rotation, a = 
u + Y and b = u + Y and u + X £ P ; 

• A triangle is a complete graph on 3 vertices {a,w,6} belonging to Gint. 

Triangle Oblique 3-path 

Figure 5: Forbiden configurations. 

Observe that if there is no oblique 3-path in Gint and if P has no hole then 
Gint is a 'convex' cycle (that is, a convex polygon). 

Lemma 2 Any connected component of G has no hole and Sint has neither 
oblique 3-path nor triangle. 

Proof Let C be any connected component of G. Then C has no isolable unit 
hexagon (by Lemma 1). We claim that: 

C has no hole. (1) 

Indeed, if C has a hole H then we construct a polyhexe Q by filling this hole 
and adding possible unit hexagons of ri — (P U 5ext(P) U H) in order to have 
the same perimeter as P. So we obtain a contradiction with the maximality of 
P , since A(Q) > A(P) + A(H) > A(P). 

Assume that there exists an oblique 3-path (a, u, b) in Gint(C). By Lemma 
1, there exists another path (v± = a, ^ 2 , . . . ,Vk = b) from a to b where Vi 7^ u 
for all i in G(C). Now by (1), the unit hexagons u — Y, u — X and u — Y belong 
toC. 

Let v = u+X. We construct the polyhexe Q obtained from PU{D} by adding 
possible unit hexagons of ri — (P U {v}) in order to have the same perimeter as 
P . By the previous remarks the polyhexe Q has the same perimeter as P and 
A(Q) > A(P) + 1, which contradicts the maximality of P . 

Assume now that {a, u, b} with a — u + X and b = u + Y induces a triangle 
in Gint(C). Since u is not an isolable hexagon then there exists a neighbour v 
of u belonging to UD(C). 

If v = u — Y then since u G 5int(C), we have u — Y $ C. So, a,u,u — X 
induce an oblique 3-path in Gint(C), which yields a contradiction. 
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If v = u + Y then since a is not an isolable hexagon, we must have a vertex 
a' G UD(C). Since u and b belong to Sint(C), a1 is different from a — Y and 
a + Y. Thus, by symmetry, we may assume that a' = a + Y. But now, since 
a G Sint(C), we must have o - i " ^ C . Hence a-Y,a,u induce an oblique 3-path 
in Gint(C), a contradiction. The cases when v = u — X and f = u — Y holds 
similarly by symmetry, finishing the proof of the Lemma. • 

Let C be a connected component of G with no isolable unit hexagon. Check­
ing for the small values of |<5;ni(C)|, we can verify that if \Sint(C)\ > 1 then 
|<5fnt(Cr)| > 6. Moreover from Lemma 2, the interior boundary of C is a convex 
cycle. Observe that by Lemma 2, the only sequences of length 2, with respect 
to the clockwise orientation of the cycle, allow in a word describing Gint(C), 
are rr^ rli, r l _ 1 , ll, lli, lr"1, lib,, hr and hi and the reverses. Thus, up to rotation, 
there exist six positive integers p, g, s, £, u, L> such that (see Figure 6): 

Gint(C) = (S) h^r-'h-n-8^. 

Figure 6: Optimal shapes. 

Lemma 3 For any polyhexe of boundary C described by a word of a type (S) 
where p, g, s and t are integers greater than 1. we have 

\Sint(C)\ = \5int(UD(C))\+6. 

Proof Assume that C is of type (5), and let p, g, s,t,u and v be positive 
integers of the word associated to (S). We claim that: 

UD(C) is of type (S) with p - 1, q - 1, s - 1, t - 1, u - 1 and v - 1. (2) 

Indeed, observe that a P or r z or /iz or l~z or r _ z or h~z path becomes a F - 1 

or a rz~l hz~x or l~z+1 or r""z+1 or li~z+1 path, respectively, in UD(C). 
If p, g, 5, £, n and f are greater than 1 then the paths of UD(C) described in 

(2) are distinct, so the lemma follows from (2). D 
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A nice shape (S) is one of the following shapes for some a > 1: 

(s)-H 

(SQ) halar-ah~al~ara, or 
(Sx) ha+llar~ah-al-a~lra-1, or 

(S2) ha+llar-ah-a-1l-ara, or 
(S 3) hala^1r-ah-a-H~ara-\ or 

{S4) ha+1laJ^lr-ah-a-H-a-lra, or 
(S5) fc°I«+2r-°/i-a-1ra-1ra+1 

Lemma 4 T/ie area of a polyhexe P with nice shape (5) and for some a > 1 
is given by: 

3a 2 + 3a + 1 if (5) = (5 0 ) 
3a2 + 4a + l if (S) = (Si) 
3a 2 + 5a + 2 i/ (5) = (5 2 ) 
3a 2 + 6a + 3 if (5) = (5 3) 
3a 2 + 7a + 4 ./ (5) = (5 4 ) 
3a 2 + 8a + 5 if (S) = (5 5 ) 

Д ( P ) = ^ 

P r o o f First observe that as in the proof of Lemma 3, a polyhexe of nice 
shape is uniquely obtained by undressing from one of the polyhexes described 
in Figure 3. Lemma 4 follows easily from Lemma 3. • 

Now, we are ready to prove the following crucial lemma. 

Lemma 5 For a connected component C of G with \C\ > 1, the polyhexe Ci = 
Gint(C) has a nice shape for some a > 1. 

P r o o f Let (S) with p, f/, s, £, u and v greater or equal to 1, be the shape of C. 
We may assume that min{p, a, 5, t ,u, v} = 1. For otherwise, we prove 

Lemma 5 for UDk~l(Ci) where k = min {p, g, 5, i, u, U}, and conclude by Lemma 3. 
Up to rotation, we may assume that u = 1. Now, using elementary geometrical 
arguments we can see that: 

A(C) = (t + v + l)(s + v + 1) - Htei-11 - Hv-bii, 

|<W(C)| = p + W + g. + 5 + D-ft, 
£ + v = a + u and s + ^ = p + u. 

(3) 

We proceed by induction on \5int(C)\. 
If p = 1 then by (3), s = D = 1 and a = t. Moreover, if t < 2 then C up to 

rotation, has nice shape (So) or (S2). So, we may assume that t = a > 3. By 
(3), we have A(C) = 3(p + 2) - 2 and |5 i n t(C) | = 2p + 4. Let p = 6i + r with 
0 < r < 5. 

If r = 0 or r = 3 then the polyhexe of nice shape (S4) with a = 2i + 1 
for r = 0 and a = 2i -f 2 for r = 3 has same perimeter as C but larger area, 
contradicting the maximality of P. 

If r = 1 or r = 4 then the polyhexe of nice shape (So) with a = 2i + 1 
for r = 1 and a = 2i + 2 for r = 4 has same perimeter as C but larger area, 
contradicting the maximality of P. 
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Similarly, if r = 2 or r = 5 then the polyhexe of nice shape (S2) with 
a = 2i + 1 for r = 2 and a = 2i + 2 for r = 5 has same perimeter as C but larger 
area, contradicting the maximality of P. 

If p = 0 = 2 then by (3), C has, up to rotation, a shape (53) or (£4). 
So, we may assume that p > 2 and q > 2. Let |o*in*(C)| = 6a + r with 

0 < r < 5. By (3) and since p > 2 and q > 2, we have 6a + r > 12 (and so 
a > 1). 

Consider the polyhexe C = C — {hi, ^2} where hi/12 is the horizontal-edge 
in the description of (5). Observe that C has the shape h2lp~~1r~th~vl~srq~1. 
Hence, 

A(C) = A(C) - 2 and |aint(C')| = 60 + r - 1. 

We apply now the induction hypothesis to C and using Lemma 4 we obtain a 
contradiction with the maximality of P. 

If r = 0 then by Lemma 4 and by induction hypothesis, we have A ( C ) < 
3 ( a - l ) 2 + 8 ( a - l ) + 5 < 3a2 + 2a. So since a > 1 we have A(C) < 3a2 + 2a + 2 < 
3a2 + 3a + l. 

If r = 1 then by Lemma 4 and by induction hypothesis, we have A(C') < 
3a2 + 3a + 1. So since a > 1 we have A(C) < 3a2 + 3a + 3 < 3a2 + 4a + 1. If 
A(C) = 3a2 + 4 a + 1 then a = 2. It is straightforward to check that in this case, 
we have (S) = (S1). 

If r = 2 then by Lemma 4 and by induction hypothesis, we have A(C ;) < 
3a2 + 4a + 1. So since a > 1 we have A(C) < 3a2 + 4a + 3 < 3a2 + 5a + 2. 

If r = 3 then by Lemma 4 and by induction hypothesis, we have A(C') < 
3a2 + 5a + 2. So since a > 1 we have A(C) < 3a2 + 5a + 4 < 3a2 + 6a + 3. 

If r = 4 then by Lemma 4 and by induction hypothesis, we have A(C') < 
3a2 + 6a + 3. So since a > 1 we have A(C) < 3a2 + 6a + 5 < 3a2 + 7a + 4. 

If r = 5 then by Lemma 4 and by induction hypothesis, we have A(C") < 
3a2 + 7a + 4. So since a > 1 we have A(C) < 3a2 + 7a + 6 < 3a2 + 8a + 5. 

In all cases, we obtain a polyhexe with the same perimeter but with larger 
area, which contradicts the maximality of P . Q 

Lemma 6 For any n > 8. G(Pn) is connected. 

Proof Let n be the smallest integer such that there exists a non-connected Pn. 
Assume that n > 8. Let C i , . . . , Ct be t > 2 connected components of G(Pn)-
It is easy to see that since n > 8 there exists some Ci which is not a square. 
We may assume now that d has no isolable unit hexagon for i = l , . . . , a 
for some a > 0 (possibly a = t), and Cj is a square for j = a + l , . . . , t . 
Thus, by Lemma 5, C;'s for i < a can be described by a nice shape (S). Let 
Pi = \8int(Ci)\. Remark that pi > 6 for all i < a. Without loss of generality, 
we may assume that pi + P2 + P3 > 8 (with convention ps = 0 if t = 2). 
Then by Lemma 4, A(PPl+P2+p3) > 3(pi + p 2 +p3)2 + 3(pi + p 2 +p 3 ) + 1 and 
A(PP1) + A(PP2) + A(PP3) < 3(p2 + pi + p2) + 8(pi + p2 + p3) + 5. Hence 
A(P P l + P 2 + P 3 ) > A(P p i ) + A(PP2) + A(PP 3), which contradicts the maximality 
ofP„. D 
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Theorem 1 follows from Lemmas 3 and 6. Theorem 2 follows from Lemmas 
4 and 6. Theorem 3 follows from Lemmas 5 and 6. • 

4 Applications 

We will use here notations and definitions given in Introduction and in Section 
2. 

4.1 Isoperimetrical problem (P) 

From the results of Section 2, we can solve the problem (P) in H with sharped 
values of perimeter. Denote Pn a polyhexe of perimeter n which maximizes its 
area. 

Theorem 4 Any polyhexe P of area A satisfies \Sint(P)\ > n where n is defined 
buA(Pn_1)<A<A(Pn). 

Observe that by Lemma 3, we can establish an analogue of Theorem 4 for 
the exterior boundary: 

Theorem 5 Any polyhexe P of area A satisfies \5ext(P)\ > n -f 6 where n is 
defined by A(P n _i ) < A < A(P n ) . 

4.2 Golomb type problem 

We denote by ( G A ) the problem: Find the minimal density of unit hexagon 
to be placed on % so that to exclude all polyhexes of area greater than A. An 
admissible solution of ( G A ) problem is a set S of hexagons centered on the 
triangular lattice Tsuch that any connected component in a adjacency oi% — S 
has area less than or equal to A. We color 'black' the hexagons belonging to an 
admissible solution S and 'white' the others. 

Now we need a measure called 'density' of an admissible solution of ( G A ) in 
order to compare two admissible solutions. 

If T is a finite subset of T then a natural way to define the density of 
<S relatively to T is L A. We show how this definition can be extended for 
infinite case: 

For an admissible solution <S of ( G A ) , observe that the plane graph G(S) 
defines a tiling of M2 (see Figure 7) where tiles are the faces of G(S). To a face 
(or a tile) (C) of G(S) there corresponds a unique polyhexe C with Sext(C) C S. 

Some of these tiles correspond to some connected components of T — <S. 
Some others are triangles corresponding to 3 mutually adjacent elements of S 
(in this case C = 0). 

Let D C M2. The density of an admissible solution S of ( G A ) relative to D 
is 

,/,-, ^N 'black' area of D 
d(S,D) = =-, 

'white' area of D 
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Figure 7: S and G(S). 

where D is the union of all faces of G(S) which intersect D. 
Notice that D defines a polyhexe P with some unit hexagon in <S; moreover 

all the hexagons in the interior boundary of P belong to S. Moreover, observe 
that d(S,D) is well-defined since each face of G(S) defines a polyhexe with 
bounded area. 

Let Br be the ball of R 2 of radii r. Then 

and 

d(S) = liminfd(5,J5 r) 

d(S) = limsupd(iS, Hr), 

are called the lower or the upper density, respectively. 
If these two values coincide, their common value is called density d(S,D). 

This definition of density is more or less standard (see for example [9]). Such a 
density was first introduced for the lattice Z 2 in [7]. We are ready now to state 
our result on Golomb-type problem: 

Theorem 6 Let n = 6a + r > 8 with 0 < r < 5 be an integer such that 
A > A(Pn). If q > 1 and A — A(Pn) < |~|] then an optimal solution S of (GA) 
satisfies : 

І(S)> 
|Дext(Pn)| 

2 1 

A(P„) 

Moreover for any A > A(Pn), we have: 

\Sext(Pn)\ 
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Proof Let S be an optimal solution of (G_). Let B e l 2 and let 

D = u{(C)eG(S) | <c)nD^0}(C). 

First we claim that: 

We may assume that any (C) has no hole. (4) 

If (C) has a hole then move it close to the exterior boundary of (C) in order to 
obtain a new face (C) with no hole. 

If we do that for any (C) having a hole then we obtain a new admissible 
solution of ( G A ) with the same density than S. 

Now we assume that any face of G(S) has no hole. Using the structure of 
%, we claim that: 

V 1<WC)1 i 

d(S,D) = ^ % D 2 \ (5) 

Let P be the polyhexe denned by D. Since the topological dual of H is the 
triangular lattice T and since each point of T can be placed in Z2 then Pick's 
theorem gives us that the area of D is \UD(P) \ + ' ini£ • • - 1 and the area of each 
(C) is \C\+ ' ex1£c'\ - 1, since by the assumption each (C) has no hole. Now by 
additivity of the area and since D is partitionate by U^c^Gr)(C), we have that 

z_ (c)eD 2 — 1 is equal to the number of hexagons in S H P not contained 
in the interior boundary of P , plus half of the number of hexagons in the interior 
boundary of P which corresponds to the 'black' area of D. _^/C\G£> |C| is the 
number of hexagons in P not contained in <S, which corresponds to the 'white' 
area of D. 

Now we prove the lower bounds on d(S). From (5), we have: 

\8ext(C)\ _ 1 

d(S,D)> mm 2 (6) 
(C)€D \C\ V ; 

Let (C )beafaceofG(«S) . 
If \C\ < A(Pn) then let p = \Sext(C)\. 
If P > n + 6 then 

£ -1 n-f-6 i 

^ " " f e ) " ' 

If p < n + 6 then by Theorem 5, \C\ < A(PP__6). Let s = n + 6 - p. Then 
by Theorem 2, |C| < A(PP_6) < A(P n) - qs and A(P n ) < q(n + 4) if q > 1. 
Hence, if g > 1 then 

E _ I ™+6~s _ 1 n + 6 _ -i 
o •*• . o •*• n -«-

\C\ - A(Pn) -qs~ A(Pn) 
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If A > \C\ > A(Pn) then by Theorem 5 we have \Sext(C)\ > n + 7, so 

[____]] _ i n+7 -i 
2 i ^ 2 X 

lol - A ' 
If A - A(P n) < |"f "J, then by easy computation based on the values of A(Pn) 

given in Theorem 2, we get 

n + 7 _ i n+6 _ -i \Sext(Pn)\ _ i 
ry X r\ -L rt -»-

~ A - A(P„) = A(P„) 

In each case, we obtain by (6), that for q > 1 and A — A(P n ) < [ | ] 

_ _ _ _ i 

d(5) > 
A(P„) 

We prove now the upper bounds of d(S). By (5), we have: 

l<5ea: t(C) l _ -j 

^^^^-^w- (7) 

Since all nice shapes are hexagons, then we know tilings of R by these 
shapes and, by (7), the density of such tilings is precisely 

l £ _ _ l l _ 1 

A(P„) 
G 

A direct consequence of the proof of Theorem 6 is that whenever q > 1 and 
A — A(P n ) < [f ] the density of an optimal solution of ( G A ) exists and is equal 
to 

l _ _ _ _ n _ 1 
o •*• 

A(P„) 

Moreover this density is independent on the position of the ball Br. 

5 Concluding remarks 

We proved that there exists a family of 6 polyhexes in H, such that any polyhexe 
in H of maximal area for a fixed perimeter can be obtained (whenever the 
perimeter is large enough) from the element of this family by an undressing 
procedure. Moreover in [7], the authors shown a family of 5 polyominoes which 
by an undressing procedure gave all optimal polyominoes for analogue in Z2 of 
problem (Q). 

We can ask what happens in the triangular lattice. We mentioned that even 
for the small value of a perimeter, it seems that the undressing procedure is not 
appropriate to solve an analogue of problem (P). 
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Perhaps in the triangular lattice the family would be infinite. 
The density defined in previous section allows to compare tilings of R when 

the tiles are polygons with vertices belonging to a lattice. Moreover, the density 
allows to compare any two tilings belonging to distinct lattices, whenever we 
compute this density. For example, in triangular lattice, computing the density 
of a tiling seems to be more complicate than in 7i or Z 2 since for instance the 
topological dual of T is % for which we have no (according to my knowledge) 
analogue to Pick's Theorem. 

It would be interesting to complete Theorem 6 in order to obtain a classifi­
cation (via density) of tilings in %. 
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