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Abstract
In nonlinear regression models several procedures have been used in
order to simplify an estimation of regression parameters. A comparison
of different approach is demostrated in the case of exponential regression.
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1 Introduction

Solution of basic statistical problems are essentially more complicated in non-
linear regression models than in linear ones. Therefore several approaches were
developed how to solve these problems by linear methods. It is to be mentioned
two important approaches, i.e. a transformation of the measured data and a
linearization of the model by the first term of Taylor series.

The aim of the paper is to compare different approaches in the case of an
exponential regression y = 3 exp(—f2z).

In the first step let us study this problem in an extremaly simple case in order
to demonstrate a behaviour of a linear, quadratic and nonlinear least squares
estimators.

*Supported by the grant No. 201/99/0327 of the Grant Agency of the Czech Republic and
by the Council of the Czech Government J 14/98: 153 100011.
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126 L. KUBACEK, L. KUBACKOVA, E. TESARIKOVA

2 Motivation example

Let us consider the model Y ~ N;(B8%,0%), B € R, where the dispersion o2
is known. The linearized version at the point By of the model is Y — 82 ~
N1(2B088,02), 68 € R and the quadratized version Y — 82 ~ N;(2B068 +
86%,0%).

The BLUEFE (best linear unbiased estimator) of 3 in the linearized model is

IB:ﬁO'i'élév
Y- ( 552 02>
%= =35, B+ 25y 352

Thus M SE (mean square error) of this estimator is
A o? 564
MSE(B) = var(B) + (bias .
(B) = var(B) + (5i25)*(B) = {5 + 4z

The Bates and Watts [2] measures of nonlinearity in this case are

KOO(8) =0, K (60) = 555
0

1£66°C < R’(Fa%c)‘(/‘ao_)» then b(88) < cv/C=1 = cy/var(3B), where C = 433 /0*

(the “matrix” of the normal equation). In detail cf. [17] and Statement 3.3.3.
Let ¢ = %; thus

1 ~
|68] < W =1/0/2 = hiin. = |b(86)] < 5V var(6f),
A _op?
b(é6B) = E(6B8) — 68 = é—ﬂ_o—’ Var(5ﬁ) 4ﬂ0

The 0.95-confidence interval is

{68:166 — 681 < 1.960/(21Bo]) = hcons. }-
As a consequence of the mentioned relations we obtain
VbCb = 5% /0.

A corrected quadratic estimator is

G=poroh,  oh=ep- 0 L 2
' 260 850
and
- _ 553 5ﬁ4
E((Sﬁ) *(Sﬂ - _2ﬁ(2) - 8587

o2 ot o268  o%B% o264
verl06) = ozt ps Ay *apy * teRy




Exponential Regression R 127

In the following tables a comparison of the variances, biases and MSEs of
the estimators 3 and 3 is given.

o | K®) | hyn | heons. | 08 var(68) | b(68) \/MSE(5B)‘
0.1 | 0.0005 | 0.224 | 0.00098 | —0.01 | 0.000025 | 0.000005 | 0.005
—-0.30 | 0.000025 | 0.004500 | 0.0067
1.0 | 0.005 | 0.707 | 0.098 —0.1 | 0.00250 | 0.000500 | 0.050
) —0.7 | 0.00250 | 0.0245 0.0557
10.0 | 0.05 2.236 | 0.980 —-1.0 | 0.250 0.050 0.5025
—-2.5 |0.250 0.3125 0.58963
-5.0 | 0.250 1.250 1.34629

100.0 | 0.5 7.071 | 9.8 -2.0 |25 0.2 5.0040
-7.0 |25 2.45 5.56799
—-10.0 | 25 5 7.07106
Table 2.1

Variances and biases of linear estimators (8 = 10)

o | KO | hign, | heony. |08 | var(sB) |0B) | /MSB(6H) ]
0.1 0.0005 | 0.224 | 0.00008 | —0.01 | 0.000025 | 0.00000 | 0.00
—0.30 | 0.000026 | 0.000136 | 0.00515
10 0.005 | 0.707 | 0.098 | —0.1 | 0.00255 | 0.000005 | 0.0505
~0.7 | 0.00285 |0.00174 | 0.05341
10.0 | 0.05 | 2.236 | 0.980 | —1.0 | 0.30057 | 0.005125 | 0.54826

. _25 |0.37952 | 0.08301 |0.62162
5.0 | 047207 | 0.70312 | 0.98354

100.0 | 0.5 7.071 9.8 —-2.0 |37.935 0.042 6.15928
-7.0 | 56.050 2.015 7.7531
—10.0 | 59.375 6.25 9.9217
Table 2.2

Variances and biases of quadratic estimators (8p = 10)

It is to be referred to relations among hiin., Rcons. and 8. As far as the
parametric measure of nonlinearity K(Pe") is relatively small (except the last
row of the tables) and 04 is inside the linearization region and at the same time
inside the confidence interval, then the quadratic corrections is practically of no
use and the linearized model gives practically the same results as the nonlinear
least squares estimator as is shown in the following.

The nonlinear least squares estimator is

B=VY.

If \/m /E(Y) = o/B? < 0.1 we can use the approximate formula for the

bias and the variance of 4 (in detail [9])
o 1504

— - ...,
85 12857

o? 7ot

E() =8~ var(é)zzﬁ—z+w+...
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The following Table 2.3 can serve for a comparison with Tables 2.1. and 2.2
(here the value o = 100 is omitted, since in this case /8% = 1 > 0.1).

L o] | wh|VmsEd]
0.1 | 0.000025 | 0.000000 0.00500
1.0 | 0.002500 | 0.000125 0.05000

10.0 | 0.252187 | 0.012617 0.50234

Table 2.3
Variances and biases of the least squares estimators (8p = 10)

3 The function y = 3, exp(—/f.z); different approaches to
an estimation of the parameters

Let values of the function y = S exp(—f2z) be measured at the points z =
Z1,...Tn. The results of measurements are a realization of the observation
vector Y ~ N,(f(8),X), where {f(8)}; = B1exp(—B2z:),¢ = 1,...,n, and
3 = 01 is a known covariance matrix.

In general it can be written in the form

Y ~n (£(8), X). 1)

3.1 Reparametrization by a transformation of the data

Let n; =InY;, i=1,...,n'. Then

nizlnﬁl-ﬂZmi'*'éiy i=1,...,n,

2 3
E; E; E; £3 .
i =hn(l+—)=—-"H+"S—... =1,...,n,
’ n( +m) w2 3 TRt

Hi = ﬂl eXP(“ﬁﬂ%’)» 1= 1)"‘1n>

—0?2 304
E()=———5+... i =1,...
(1) 2’[1/? 4u?+ ) 1 b $n7
0?2 50t
&)= —-+—+... i=1,...,n.
var(6;) 2 + 208 +..., i=1...,n

OLSE (ordinary least squares estimator) of In8; and f3; is

— n -1 n
In 3y 1IN\ =15/ ( n, _E'— $i> ( E‘-— i )
S = (X'X)"X'n = n 7i=1 ! )
( B2 ) ( ) " - Ei=1 Tiy Zi:1 :c? - Ei_—.l TiMi

1To say it exact, the normal random variable {Y}; = Y; cannot be transformed in this way.
However if 0/ E(Y;) is sufficiently small, e.g. < 0.1, then the following results are realistic—in
more detail cf. [9].
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where

(lnﬂl) h‘ﬂl + (X'X)7IX'E(8), (X'X) X var(8)X (X'X) !

5 = 51,... n)

Lemma 3.1.1 Let

/ L}
(X’X) 1X <LI ) ) Lll = (Ll,ly-”aLl,n)l, le = (L2,1,"'aL2,n)l~

Then
— = a? 30t
E(np,) =Inp + ZLl,i (*E - m + .. ) s
i=1
n 2 4
o 30
Ba) = ﬁ2+ZL2,i (*5—2‘— 4_;7;‘+'”> )
e
var lnﬁ1 ZL <— 2114 +. )
n 2
e 92 (O 504
var(B2) = ;LQ <#2 + 2”4 ) )
o2  5o*
cov(In By, B2) = ZLI iLa (- ot ) .
=1 i L
Proof Since it is obvious however tedious, it is omitted. a

Lemma 3.1.2 If the estimators of B, and B2 are considered in the form

Bl = eXP(lgﬁl)a ﬂ_z = Bz,

then
"o
(51)-—31+ﬁ1|:ZF< =L+ L )
a 3 3 1
4 —:1 ( ZLI i + L ZL?Z + gL%,i)
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1
+Z 737 (Luilns = L3 Ly + LT ;L )]
= +}:L (— ol S, )
2 2,1 ,U«% 4N L I}
n 4
o* (5 3
var(B,) = B2 [Z L2 +ZE<§L@—4L§J+§L‘{J>
=1 "1

+ Z 3L§ L2, LiiLu):‘ +
1#1

n
g
COV( {2—2— 1L+

1
+Z (L“Lg, 2L§|iL2,i+§L§ﬂ-L2,i)

04 1
+Y 5 [—ng,iLl,j(Lz,i + Laj)
i it

1 1
+§LiiL1,jL2,j + ZL"l’,iLzJ}} +...,

4
varﬁz)—ZL <___ 2‘74+ )

Proof Since it is obvious however tedious, it is omitted.

3.2 Reparametrization and weighting the transformed data

The approximate value of the var(d;) is the first term o2/u?. With respect to

the inequality
var (lnﬁ1> = (X'X)" X var(§)X(X'X) " > (X' var }(§)X) 7!,
2

(cf. [6, pp. 14-15]) it is reasonable to use GLSE (generalized least squares

estimator), i.e.

<1niﬂl> = (X'var 1(8)X) ' X' var~(8)n,
Ba
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where var(§) = Diag(o?/u2,...,02/u2) (the notation Diag() means the matrix
with the entries on the diagonal equal to the values given in the brackets and
with other entries equal to zero), instead of the OLSE (in more detail cf. [1]).
Since in the variance

var(8;) = o /uf

the value p; is unknown, it is necessary to use approximate value ugo) =

50) exp(—Bz(,O)mi) of the quantity p; = B exp(—pB2z;), or to use some itera-

tions in order to obtain the estimators 111/\61 and f3,. Some investigation of an
analogous situation cf. in [4].

Let
/(w2 o0, ...,0, 0
W = o2 0, /(™) ...,0, 0
0, 0, , 0, 1/(u@)2
and

ocw=(f). - (5)- ()

Then the bias and the variance of the estimator El and BQ, respectively, can be
expressed analogously as in Section 3.1. The vectors Lj, Ly must be substituted
by the vectors ki, ks. Thus we obtain

— ~ o? 304
E(InpB,) =B+ )k <—-2? b +> ,
1=1 t 4

- o? 30

2 Z 2,1 2”’12 411'1,4
5 4

var(ln,B1 Zkzz (-— 204 +. >
. n 2 4
2 o 50

var(8,) = k2-<—+—+...),
2) ; 2\up 2l

504
covlnﬁl,ﬂ2 g k1,ik2; —‘— 2#4%-... .
1

If the estimators of 31 and 3, are considered in the form

Bl = exp(lﬁl)a 52 = 327
then
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"ot/ 3 11 3 1
gﬁ( Bk ghh - g g

Z kl,kl,J ki ki +RLED) | + .
i#j

o2 30
,324‘2 kh( 2 4“ +.. >,
n 2 n 4
(o 2 o 5 2 3 3 4
E i . E — | =k%. —4k? . —k3.
”2k1,1+ ,LL? <2 1,2 1,z+2 l,z)

=1 "1 i=1

var(8,) = A2

+3 i Okl = K aha)
t#]

n

= = 2
cov(By,82) = B {Z %kuku

i=1

1
+Z ( kyikai — 2k ko + 5’“%,1"“2,1')

1
+Z e [—gkl,ikl,j(kz,ﬂrkz,j)
1#1

1
+ Ekf,ikl,jkz,j + Zk{ikz,j] } +...,

= = o? 5ot
var(ﬂz) = Zk%ﬂ (P + ZL_‘{ +.. > .

i=1 4 1

3.3 Linearization of the model

If approximate values ﬂfo) and ,850) of the parameters (3; and B2, respectively,
are known, then in some cases the model

Y —fo ~n (F6B, %) ) 2

can be used. Here

f = (B0 exp(~A0z1), .., B exp(~6z0)) |
{F}j,l =0 [ﬂl exP(—ﬂzl'j)] /aﬁllﬁzﬂ(o)7 .7 = 1’ EERERL
{F}j2 = 0[B1exp(—Baz;)] /0B2lg=po, j=1,...,n

Some caution is necessary in using the linearization. It is useful to analyze a
linearization regions for some statistical inference in the model. The theory is
developed in [11] and [13].
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The Bates and Watts measures of curvatures ([2]) of the model at the point
B, are

»-1
(int) _ M7 Kslls- . k
K (By) = sup { IFSIE se€ R,

(the intrinsic curvature) and

n-1
(par) _ IPF Kslls— : k
K (By) = sup { IFS[E. sER",

(the parametric curvature). Here F = 0f (u)/0u’|u=p,, ks = (sH}s,...,sH,s)’,
H, = 0%fi(u)/0udu'lu=p,, @ = 1,...,n, ME = I1-PE and P¥ =
F(F’z—lF)'lF’E"l. The matrix F is assumed to be of the full rank in columns,
i.e. r(F) = k < n and the matrix ¥ is assumed to be positive definite.

The model (1) in the quadratized form is written as

1
Y ~ N,(fo + Fé83 + 586> 3). (3)

Here fy = £(3,)-
The linear estimator in the model (2) is
B=By+06B, B=FTTF)IFTY 1)

and with respect to (3)
- 1
5B ~ Ny, (5[3 + 5(F'z—lF)~1F/§:~1m;ﬁ, (Flz—IF)~1) .

In the following the influence of nonlinearity of the model is demonstrated
in testing the consistency of measured data with the linearized model, in the
bias of linear estimators of the parameter 3, in the bias of the linear function
of the parameter 8 and in a deterioration of the estimator of the variance of a
linear function of the parameter 8.

Let h be any k-dimensional vector and let

b;,(68) = E[W'3B(Y,0)[58] — h'68 = h'b(88), 68 € O(By),
d;(68) = var[h'3B(Y, 68)|X] — var[h'5B8(Y,0)|Z], 68 € O(B,),
Ui (88) = W6B(Y,88) — h'3B(Y,0), 68 € O(By),
ui(38) = W3B(y,5B) ~ W'5B(y,0), 68 € O(B),
where y is a realization of the observation vector Y,
b(68) = E[3B(Y,0)|68] - 6,
5B(Y,0) = (F'S™'F)~'F'S (Y - f),
E[FB(Y,0)158) = (F'SF)~"F's" (F86 + 5msa),
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3B(Y,88) = (FiS7'F) 'Y - fy),
F1 = 0f(u)/0u'|u=g,+sp,
f; = f(ﬁo + 5ﬂ)7
var[h'5B(Y,68)|Z] = h'(F,="'F;) 'h.

Let
1(58) = 558,38 € O(By)
Un(38) = Qf’j—(%%‘)’—’aﬂ,w € 0(By),
un(88) = Ogégﬁ)w,aﬁ € 0(By).

Let € and ¢ (> 0) be such constants and

0a(Bo)s Ob(Bo), Oc(Bo), Oa(Bo), Oc(Bo) and Of(8By)

such neighbourhoods that

(a) P{v’Z‘lv > x%(0;1 — a)} <a+e 88 € 0.(B8y),
b) b/(68)Cb(IB) < a®xi(0;1—a), 6B € Oy(By),
c) [65(68)| < cVW'C-Th, 6B € O.(By),
d) [da(6B)] < *h'Cth, 38 € 04(By),
e) var[Un(88)|Z] < W' C~'h, B € O.(By),
(f)  |un(6B)| < cvB'C=Th, 6B € O4(By),

respectively. Here

(
(
(
(

C = F'E7'F,
v = ME (Y —£) ~ N, (M2 gy, ME T (ME )
= F 0) ~ IVNn 9 F Ksg, F F 3

a?x2(0;1 — a) = ¢ and x7(0;1 — a) is the (1 — a)-quantile of the central chi-
square distribution with k degrees of freedom.

Definition 3.3.1 The model (3) is c-linearizable with respect to a function h(.)
in the set O:(B0), Oa(By), Oc(By) and Of(By), respectively, if the inequalities
(c), (d), (e) and (f), respectively, are satisfied.

The model (3) is e-linearizable with respect to a compatibility of data with
model, if the inequality (a) is satisfied.

The model (3) is c-linearizable with respect to the bias of the parameter
estimator 84, if the inequality (b) is satisfied.

The sets Oq(Bg), ..., 0¢(B,) are called the linearization regions.
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The following statements are proved in [5] and [7],[11], respectively.
Statement 3.3.2 If

_ . / 2v/0max
8B € O.(By) = {5ﬂ 1 (6B)'CoB < m} s

where dmax S given by the equation
P{szt—k((smax) > xi_k(O; l-a)}=a+e,

the model is e-linearizable at the point B,. Here Xﬁ_k(5) is noncentral chi-
square random variable with n — k degrees of freedom and with the parameter of
noncetrality equal to §.

Statement 3.3.3 Let ¢ =a+/xi(0;1 - ). If

5B € 0u(B,) = {w .6 F'S'F6B < — 2

C
FoEy |

th(zn
v{h € R*}|b}(68)| < cVh'C-1h.

Statement 3.3.4 Let L, = h'CT'F'S™" = ({Ln},,...,{Ln}s) and

By = Z{Lh},éHi =) _\igs8;

i=1 j=1

be the spectral decomposition and let

B =) |\lg;g)
j=1

Then
5B € O.(B,) = {dﬂ . 58'B6S < cx/h’C*lh} = |b1(58)| < eVh'C-Th.

Let
. eQHI
H: = ) 1= 17 ak)
eH,
where e; € R*, e; = (0,...,0,1;,0,...,0) and
h'C-l(H:)'s™! - /LH;
K{" = : and K" =

hlc—l(Hz)lz—d / ) LZHZ
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Remark 3.3.5 Let
BBy, u) = h'u-+ [(8F(u)/0u’) T} (9F(w)/0u')] T (0F (u) /ow') B (y — £(w)).

Then A . B es
oh'B(y,u)/0ulu=p, = h + K{"v — K{M6B(y,0),

where v =y — £(8,) — F63(y,0). (In Lemma 2.11 [5] a little different formula
is given.) Thus

W (B, +68) + 6B(y, 68) ~ W'y + W'6B(y, 0) + (38)’ [K{"'v — K{sB(y, 0)]

and A
un(68) ~ (68)’ [Kg’”v - Kg”>5ﬁ(y,0)] .

Statement 3.3.6 If in the model (8) 68 € O4(B,), where

! —lh
OulBo) = 4 68 : 58'58 < & be ,
WG (KIF + KUy (<1 £ KI)C Th

then |dp(6B8)| < c*h'C~1h.

Statement 3.3.7 If the power of components of the vector 08 greater than
two is neglected, then in the model (3)

Un(68) ~ Ny {h’b(éﬁ),éﬂ’w(h)éﬂ} ,

where
wh = [th)(z _ FC_IF')(th))l + th)c—l(th))l] )

Statement 3.3.8 Let the notation WP from Statement 8.3.7 be used.
If
6B € 0.(B,) = {68 : 58" WMs3 < *h'C~'h},
then +/var[Un(68)|Z] < cvh/'C-1h.

Remark 3.3.9 If the criterion from Statemggt 3.3.8 is too restrictive for some
realization §3(y, 0) of the random variable §3(Y,0), i.e., if a realization Vrea

of the rezidual v and the vector &;‘(y, 0) makes the value

un(88) = 38'[K{" Vet — K§VB(y,0))
small, then it is reasonable to calculate the value
cVh'C-Th
VI ot~ KE5B(y, 0) K vreat ~ K§V5B(y, 0)]

=T.
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If /683’68 < T, then |un(6B)| < cv/h'C-1h.
If the region
05(Bo) = {68:66'58 < T"}

covers the region
Oc(Bo) = {38 : 8'W™M58 < *h'C™'h},

then in the actual case the value T is to be preferred. Also a comparison of the
regions O.(83,) and Of(B,) can be interesting and important in practice.
From the above given relationships it is clear that the first important infor-
mation on the nonlinearity are the measures K (t)(3,) and K(P*")(3,). In the
following table some values of those measures are given (in more deatil cf. [17]).

[ ) T @& [ G 1 G | Cow [ (%) [ (Gl |
K@ () [0.020582 | 0.055846 | 0.138862 | 0.250937 | 0.326234 | 0.359022
K@) () [0.057598 | 0.119664 | 0.207130 | 0.303481 | 0.474110 | 0.750977

Table 3.3.1
z=1,2,3,7,8,9, o=05

3.4 Quadratic corrections of the linear estimator
The following notations will be used in this section.

Y ~ No(f(B),0°I), o€ (0,00),

fo = £(B,),  F = 0f(u)/0u'lu=p,,

H; = 0°fi(u)/0udu'|y=p,, i=1,...,n,

e; € R, {ei}; = d;,; (Kronecker delta),

n
1
B, = Z{GQC—IFIE_l}j—Q-Hj, i=1,...,k,

j=1
68'Bo,168
C=F32"'F(=0°FF), b= : :
68'Bo k0B
0B = &%—m—iﬂu, u an arbitrary non zero vector,
u’/Cu

(68 is located at the boundary of the (1 — a)-confidence ellipse).

The corrected estimator of B; is
Bi = Bo,i + 3B;,

§6; = 68; — 58 Bo6B + Tx(BosC™Y), i=1,...,k,
6B = CTIF'E V(Y - f).
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The following statements given in this section are proved in [12]
Mean square error of the linear estimator

MSE(B;) = {C™'}ii + (68'Bo,idB)°.
Mean square error of the quadratic estimator
MSE(,Z‘L) = {C_l}i,i + Q'I‘I‘(BoyicnlBoin_l) — 4e;C_1B0’i6[3

+ 4(5,8’80’1'0_1]30,1‘5,3 - 4620_1B0’ib + 8b/B0,iC~1B0,i(5ﬂ
+4b'Bg;C™'Bg ;b + 4(b'By:68)* + 4b'Bg ;68b'Bg ;b + (b'By ;b)?.

In the following (cf. 5. Numerical example) the M SE of the both estimators
will be calculated for

X2(0;1 — @)
u’Cu

0B =

u, u an arbitrary nonzero vector.

Upper bound for MSE of the linear estimator at the boundary of
the (1 — a)-confidence ellipsoid

MSE(B;) < {C i + Tr[(BoiCH)[x2 (01 — @))%, i=1,...,k.

Upper bound for MSE of the quadratic estimator at the boundary
of the (1 — a)-confidence ellipsoid

MSE(B;) < {C }11 + 2 Tr(Bo,,C By, C™Y)
+4y/Tr(Bo, i C)2 [{C 1} /x3(0,1 - )
+ 44/ Tx[(Bo,:C~1)4]x2(0,1 — @)
+2y/Tx[(Bo, =12 [{C 1} s K #* (Be)x (051 - o)
+ 44/ Tr[(Bo,: C~ )4 K **") (By) [x}(0; 1 — )]*/?
+ 4/ Tr[(Bo,: C~ )4 [K P (Bo) P [x} (05 1 — )]

+Tx[(Bo, C~)?)[K ™7 (8) P [x3(0;1 — a))®

+ 5 TH{(Bo, G IIK ) (B0) [ (051 - )]

+ 25 TH(Bo KO (B (0:1 - o)

Let

2
= xz(0;1 — o) o
6B = \/{C_lBO,iCBO,iC_l}M {Bo,zC b

(this vector is directed as the gradient 8M SE(8;)/85p of the function M SE (Ez)
and it is located at the boundary of the (1 — a)-confidence ellipsoid).
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Then

2(0;1 -« 2 _ _
(56'Bos3p)" = <{C_1)é]z)(iCB0i():—l}ii) ({C lBg'iC l}i’i)2

(square of the bias of the linear estimator) and

_ 1 - B2 .c! xi(0:1 o)
4] - €{C™'Bo,:08| = 4{C"'B;;C }“\/{c 'B,iCBo,;C~1}i

(the value of the linear term in MSFE (51))
If

1R2 -1 Xk 0 L —-Ot)
4{C™'B;,;C }“\/{C 1B,;CBo,iC~1}i; -

2
Xk(()? 1- a) C~1B3 C~1 . 2
~ \{CBy;CBy,C '}, 3 0:C7 )

then the linear estimator is to be preferred.

3.5 Nonlinear least squares estimator

In this section the model

Y~ Nn(f(ﬁ)vz)» Be és
where 8 means the parametric space (in our case of the exponential regression
B =R

~ The following notations will be used in this section (in more detail cf. [15]).
" is the actual value of the parameter 3,

int($3) means the topological interior (in Euclidean sense) of the parametric
space S.

The nonlinear least squares estimators of the parameters 8; and 3, are given
by the solution of the equation

[0f'(B)/0B) ="y — £(B8)] = 0,
ie.
N
(—,Blzle"ﬁm, ey —ﬂlmne‘ﬁzzn ) b : - 0.
— ﬂnehﬁzxn

In the following let 3 = o¢?W.
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With respect to [15, Proposition 7.1.1], the probability density function of
the nonlinear least squares estimators ﬂl and Bg of the parameters 31 and 3, is

ps-(B) = C*q(BIB")E™{det[I + D(b, 5)Q(B,8")]},

det[Q(B,5")]
(27) 2 ok {det[Co(B)]}

{Q(B,8)}i; = {Co(B)}i; + [£(B) — £(B") ' W [L - PY ™ (8))0:0,£(B),

a(BIB*) =

so{ =5z IPE ™ (BB - £V -

{D(b,B)}i; = was W10,8;£(B), i=1,...,k

Here Cy = F'W™!F, E* means the mean value with respect to a truncated
normal density with (n — k) variables

(2mo?)(n—k)/2 ex szb'b}, if b'b < (ro/2)?,
f(b) = { Pt~ b b > (ro/2)2.

the symbol C* means the norming constant and it is either equal to 1 (if the
density pg-(-) should be normed to the probability of the restricted parameter
space 3(ro)), i.e.

/ ps-(8)dB = Pr{T*(r0)},
B(ro)
where
Blro) = {8 €int(B) : [PY " (B)E(B) — £(B")llw-s < ro/2
and [[£(8) — £(8") w1 < ro}.

or it is equal to
= [Pr{T™(r0)}] 7%,
if the density pg-(-) should be normed to one, i.e.

/ pp-(B)dB = 1.
B(ro)

Further n-dimensional vectors
ws(B), s=1,...,n—k

are W~ -orthonormal and W~!-orthogonal to the columns of the matrix F(3)
and the number 7o defines so called restricted sample space 7*(ro)

T (ro) = U Z(B,70/2),

BEO(r0)
2(B,70/2) = {y: <y —£(8),F(B)>w-1=0
and |ly — 4. (B)llw-1 < 70/2},

¥s-(8) = PY T (B)[E(B) — £(B")] +£(B").
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If K™ (B,) is defined as follows

(int) _ Hlv'[}/v"v_lK's”W—1 . k
KO (ﬁO) - Sup{ ”FS”%;V—l :SER )

then the so called assumption of bounded curvature must be satisfied:
1
int !
K3™(8)

Further the so called assumption of non-overlapping must be also satisfied:
There is no y € T(rg), such that the normal equation

[of'(B)/0BIW "y — £(B)] = 0

has two solutions 8, 8®) ¢ int(B), and that

v{B € B(ro)} ro <

ly = £B)lw-1 < ro,i=1,2.
Under these assumptions the following inclusions hold
G(ro/2) € T*(ro) € G(ro),

where G(r) = {y € R* : |ly — f(8")|lw-: <r}.

The number 7o must be chosen so that the conditions are satisfied. If rq is
too large, then the assumptions are violated; if it is too small, then the accuracy
of the approximate density is unsatisfactory. .

If both assumptions hold, then for every y € T*(ro) the estimate B(y) is the
unique solution of the normal equation which belongs to the set 8(ro). (Further
detail cf. [15].) a

4 Design of experiment

In the following two versions of the optimum design of experiment (in more
detail cf. [14]) will be considered, i.e. the D-optimum design for the model
after logarithmic transformation and the D-optimum design for the model after
linearization.

Let the set of the experimental points be £ = {z1,,...,z,}. In the case of
the model after the logarithmic transformation
- 27,2
1, —z; In g, a2/u?, ..., 0
n~ || ...... 3 B
1, -z 2 0, ..., 0% u?

the information matrix for the design ¢ is

M(¢) = gﬂf ( _;) (1, —2)G.
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Here ¢; > 0,i=1,...,r,and 3|_, (; = 1.
Let

o) ()

. 1, —z;

2 2 » TTj
ui (1, —z; E u-C( )

( 1) j=1 7™ —Zj, 2

d;

J

The D-optimum design ¢, is defined as follows
det[M(¢")] = max{det{M(C)] : ¢ € A},

where A is the set of all designs. In [14] the following statement is proved.
Statement 4.1 Let ¢((9 = 1/l,¢; € Sp(¢@) = {e; : Ci(o) > 0}. If

di;,, = max {ﬂ?(l, —z)M ™ (¢¥) ( _;) =1, .,r}

and

I+s (s) . - %
C(s-f—l) — { l+s+1<’i( ); 2 % Ts+1s
i I+s s 1 .
l+s+1Ci t e T et

for s = 0,1,..., then lim,_,o M(¢)) = M(¢h).

In this way we obtain the D-optimum design for the model after logarith-
mization when simultaneously the weighting is taken into account.

The following formula is useful in the process of iteration.

M) =

1, —z;~
2 —1(p(s) ’ Yol —1(p(s)
ph MO ) M ()
_ l+s+1 M_l(c(s))_ s+1 s+1
T l+s 1
Lbs+ (1=, M) ( s )

The iteration procedure can be stopped when
dir —k<e (chosen by a user).

In our case of the exponential regression k = 2.

Quite analogously the D-optimum design for the linearized model can be
obtained.

Let

£ = (8£:(8) /081, 0£:(B)/3Bs) lg=ps = (6772, Ve P") i =1,...,1,

where B, is an approximate value of the vector 8*. If the vector (1, —z;) in the
given procedure is substituted by the vector f] and instead of p; the value 1 is
used, we obtain the D-optimum design for the linearized model at the point 3.
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Remark 4.2 It is to be said that in the model

1 —I1
’ In Sy 2
n~ || ...... ( ) ,o'I],

the D-optimum design is

1 —mi . - i
¢ = | 2 Tmin =min{z;:j=1,...,7} OF Tmax =max{z;:j=1,...,7},
¢ 0, otherwise.

5 Numerical example

Let & = {1,2,3,4,5,6}, B, = (_8_3) and o = 1. Then the D-optimum design
for the model

Iny; =Inpy — Bozi + 8, & ~1 (0,0%/p2),

T 1 2 3 4 5 6
C100 || 0.009434 | 0.009434 | 0.471698 | 0.009434 | 0.009434 | 0.490566
Table 5.1 ‘

In this case d100,max = 2.02644 and

-1 _{0.021568, 0.003742
M (Cr00) = <0.003742, 0.000672 )’

det{M~({100)] = 491 x 107° in a comparison with the starting design (Table
5.2)

T 1 2 3 4 5 6
| Co 1/6 11/611/6|1/6|1/6|1/6
Table 5.2

where

0.018783, 0.003553
-1 _ y
M~ (o) = <0.003553, 0.000717) ’

det[M~1(¢,)] = 843.5 x 107°.
In the case of the linearized model
yi = B1” exp(—B"w:) + (exp(By zs, B wi exp(~y) )68 + e,

for the same set &£, the D-optimum design is identical with Table 5.1. The

information matrices for the starting design (Table 5.2) and the D-optimum
one (after 100 iterations) are

1.+ _ (1.202100, 0.028423 e e e
M7 (Co) = (0.028423, 0.000717 )+ 4eM ™ (Go)l = 54.039 x 107°,

1.y _ (1380400, 0.029936 o ~ 6
M (Cwo)“<0.029936, 0.000672 ) > 4etM ™ (Cro0)] = 31.465 > 107°.
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The D-optimum design cannot be used in practice for a small number of
measurements. Thus let us try some approximations of the optimum design for
n = 6.

If
T 3 6
¢l 1/211/2
Table 5.3
then for o =1

-1 ( 20.266000, —0.676350

—1y _
—0.676350, 0.024680>’ det(C™7) = 0.042716

and K(")(B,) = 0, K®")(B,) = 1.77497. (The value of K(ar)(8,) is ex-
tremaly large.)
If

T 1 3 4 6
¢ll1/6|1/3|1/6|1/3
Table 5.4

then foro =1

cl ( 3.250400, —0.130580

—1y _
~0.130580, 0.007496)’ det(C™7) = 0.007314

and K™ (8,) = 0.142282, K(®37)(8,) = 0.212473.
In the further the last design is used.
Since

z 1 3 1 6
B exp(—pPx) | 5.926 | 3.253 | 2.410 | 1.322
Table 5.5

the value of ¢ is chosen as 0.3. Even in this case
) [ﬁ§°) exp(— §°)6)] =0.227,

what does not mean a precise measurement usual in metrology. (It is to be said
that the smaller value of ¢ is chosen the linearazation is better.) Then

-1 0.292540, —0.011752
c = <~0.011752, 0.000675> ’ )
K (8,) = 0.042684, K (Par)(3,) = 0.063742.

In Figs. 5.1-5.8 the linearization regions are given for ¢ = 0.5, o = 0.05 and
€ = 0.04 (cf. Definition 3.3.1).

The 0.95 confidence ellipse is the same in all figures however its graphical
demonstration is different. The aim is to show boundaries of linearization re-
gions and that is why scales on the axis dbl and db2, respectively, are different
in different figures.
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REGION Oa

L0 ey

Fig. 5.2

Region O,

REGION Oc

Fig. 5.3: Region O, for h = (1,0)’
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R P R RSN

REGION Oc

ERICE LY
A% LA

Lhiz

REGION Od

Fig. 5.5: Region Oy4 for h = (1,0)’

REGION Od

Fig. 5.6: Region O, for h = (0,1)’



Exponential Regression 147

REGION Oe

= DG A00LY

Fig. 5.7: Region O, for h = (1,0)’

L e e B ]

2 pvasci
wantiitng

Fig. 5.8: Region O, for h = (0,1)

A comparison of the behaviour of the linear and quadratic estimators is given
at the boundary of the 0.95-confidence ellipse in the following Tables 5.6 and
5.7.

0B = (0'3)25) 0B = (0 835) 0B = (3.(1);3)
MSE(31)| 0.292538 0.293311 0.292903
MSE(;@I) 0.293016 0.253871 0.260243
MSE(B2)| 0.000675 0.000687 0.000683
MSE(,Bz) 0.000559 0.000511 0.000515

Table 5.6: ¢ = 0.3
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The upper bounds of the MSE (UBMSE) at the boundary of the 0.95-
-confidence ellipse of the estimators are in this case

UBMSE(f;) = 0.301110,

UBMSE(f,) = 0.388105,
UBMSE(f2) = 0.000699,

UBMSE(f,) = 0.000920.

88 = (*5.) |98 = (4.116) |98 = (Cos1)
MSE(B1)| 3.250430 3.345800 3.777260
MSE(BI) 3.309380 1.891950 1.621550
MSE(B2)| 0.007496 0.008994 0.010144
MSE([5’2) 0.003818 0.002893 0.003585
Table 5.7: 0 =1

The upper bounds of the M SE at the boundary of the 0.95-confidence ellipse
of the estimators are in this case

UBMSE(f1) = 4.308630,

UBMSE(B,) = 8.615380,
UBMSE(B2) = 0.010517,

UBMSE(B,) = 0.021315.

If the In-transformation of data (i.e. Lemmas 3.1.1 and 3.1.2) is used, then
we obtain

OLSE GLSE
E(n(B) = 208974 | E(n(3) =  2.08296
var(n(3;) =  0.001631 | var(In(31) = 0.000715
E(B) = 813214 | E(f) = 804683
var(B) = 0849031 | var(3;)) = 0.302976
E(fy) = —0.204127 | E(By) = -0.29643
var(f) = 0.001631 | var(3;) = 0.000715

If these values are compared with (4), we can see that the best results can
be obtained in the case of linearization (if it is possible) or by quadratization,
then by GLSE and the worst results are in the case of OLSE, which is the most
frequently used procedure in practice.
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