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Abstract

The regular linear model in which the vector of the first order parame-
ters is divided into two parts: to the vector of the useful parameters and
to the vector of the nuisance parameters is considered. We study the situ-
ation when constraints of the type I are given on the useful parameters.
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1 Introduction, notations

There are situations in practice, that in the linear model with useful and nui-
sance parameters some constraints are given on the useful parameters. For
example (author prof. Kubacek) by measuring a gravimetrical closed traverse,
possibly complexes of such closed traverses creating a net, the gravimeters with
following insufficiency are used: their time drift is not insignificant. The regis-
tration of the measured quantity (which does not change) changes in time. These
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changes are modelled by polynomials of the 3rd and 4th degree with unknown
parameters. These parameters are estimated from the results of measurement.

The values of the differences of gravitation which are the object of measure-
ment have to fulfil the obvious condition on the closed traverse: the sum of
the differences is equal to zero. In case of measuring on a net several of these
conditions come into existence.

The conditions are obviously relevant to the useful parameters (the differ-
ences of accelerations of gravitation), no conditions are assigned to the nuisance
parameters (the coefficients of the drift polynomials).

The following notation will be used throughout the paper:

R the space of all n-dimensional real vectors;
Uy, Amn the real column p-dimensional vector, the real m x n
matrix;
Al;r(A) the transpose, the rank of the matrix A;
A(A),Ker(A) the range, the null space of the matrix A;
A~ a generalized inverse of a matrix A (satisfying AA~A = A);
At the Moore-Penrose generalized inverse of a matrix A

(satisfying AATA = AJATAAT = AT (AAT) = AAT,
(A*A) = A*A),

Py the orthogonal projector onto .#(A);

My =1-P, the orthogonal projector onto .#*(A) = Ker(A');
I the k x k identity matrix;

Om,n the m x n null matrix.

If #(A) C #4(S), S p.s.d., then the symbol P35 denotes the projector pro-
jecting vectors in .#(S) onto .#(A) along .#(SA=1). A general representation
of all such projectors P4 is given by A(A’S™A)~A’S™ + B(I — SS™), where
B is arbitrary, (see [5, (2.14)]). M35 =I-P5 .

Let us consider the following linear model

Y:(W,Z)(ﬂ>+6, 1)

K
where Y = (Y3,...,Y,)" is a random observation vector, # € R" is a vector of
the useful parameters, x € R® is a vector of the nuisance parameters, W, ,. is
a design matrix belonging to the vector 8, Zy, s is a design matrix belonging to
the vector k.

We suppose that

1. BE(Y) =W+ Zk, VB € R", VK € R,

2. var(Y) =Sy =30 % Vi, V9 = (V1,...,9) €9 C RP, V4,...,V, given
symmetric matrices,

3. ¥ C RP contains an open sphere in RP?,

4. if 9 € ¥, the matrix Xy is positive semidefinite,

i

5. the matrix Xy is not a function of the vector (8',x')".

If the matrix ¥y is positive definite for any ¥ € ¥ and r(W,Z) =7+ s < n,
the model is said to be regular, (see (2, p.13]).
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Theorem 1 In the reqular model (1) the 9-LBLUE of the parameter (8', k')’
is given by

—1 1
) (W'S;'M5° W)~IW'S; IME" v
(Z's;'z)'Z's; My 1y

:< (W/[MzZyMz]? W) IW/[MzZyMy|+ )
(Z'25'2)12'S; {1 - WW/ (MzEyMg)t W] W/ (MzEsMg)t}

Proof see [4, Theorem 1].
2 Regular model with constraints on the useful
parameters

In the introduction the situation was described when the vector of the useful
parameters has to fulfil some conditions.

Definition 1 (see [2, p. 57]) If the parametric space R" of the parameter § in
the linear model (1) is reduced into the linear manifold

B={B:feR ,b+Bp=0}, 2)

where B is a given ¢ X r matrix and b € #(B) is a given g-dimensional vector,
then the model is called linear model with constraints of the type I on the useful
parameters.

Consider the regular model [Y,(W,Z) (i) ,Ey] with a system of con-

strains (2) on the useful parameters.
Let us suppose that
r(B)=¢<r

Theorem 2 In the regular model (1) with constrains (2) the 9-LBLUEs of the
parameters 8 and K are given by

3 =[I-C'B'(BC"'B')"'B|f - C~'B'(BC~'B) b,
k=k+(2'5;'2)712/S;'WC™!B/(BC™'B')~}(b + BJ),
where ,B, R are the estimators in the regular model without constrains (see The-
orem 1) and

C=WMzZyMz)"W.

The variance matriz of the estimator B is given by

var(B) = [Mp CMp]*.
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Proof We will follow the proof of the [3, Theorem IV.3.1.]. Let Kp be the
r x (r — ¢) matrix with r(Kg) = r — ¢ and #(Kp) = Ker(B). Let Sy be
an arbitrary but fixed particular solution of equation b + Bf = 0. Then each
vector § € 4 can be expressed as

B=P0+Kpy, YyER I

Hence the model (1) with constraints (2) is equivalent to the regular linear
mode! (without constraints)

Y - Wg, = (WKp,Z) (7) +¢e, vyERTY k€ R,

K

where
var(e) =By, r(WKp,Z)=r—-qg+s<n.

According to [2, Theorem 1.1.1.] the ¥-LBLUE of the parameters in this model

(

¥ 55
(WK, Z) <K> =P, Y~ Wh] =P, [Y - Wg.

2

) = [(WKp,Z)2; (WKg, Z2)] " (WKp, Z)'S51 (Y — W),

i.e.

P,z = (WMp, Z)[(WMp:, 2)' S5 (WMp:, Z)]” (WMp:, 2)'S5"

_ MpW'S;'WMp; MpW'S5'Z]" (Mp W'\ (_;
- (WMB’1Z) I: 21251WMBI; leglz A 219 )

_ A A | (Mp W'
- (WMB’)Z) |:A21; Agg] ( /A 219 )

where (we have used Rohde’s formula for inverse of partitioned p.d. matrix, see
(1, Lemma 13])

A = [MpW/(S5! - 551 2(2'55'2) 7 2S5 ) WMp |

= [MpW/(MzZyMz)*WMpg/| ",

A = (Ay) = - [Mp W/ (MzZyMz)"WMp/ | MpW'ESZ(Z'E;1Z) 7,

Ay = (2'S5'2)7 1 +(2'%5'2) 12/ ' WM B/
x [MpW'(MzZgMz)*WMp/| MpW'S;1Z(Z'5512)71.
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Thus

—
ey

K == = 5-1
(W,Z) ( 57) =WKpy+Ze =P, (Y - Wp)

= {WMBIAHMB/W’ + WMBrA12ZI + ZAQlMB/W/ + ZAZQZ’]
x 51 (Y — W). (3)

Let us denote
C=W(MzZyMz)tW.

In the following we use that

a) in the expression WM p, (Mp CMp/)"Mp/ W' an arbitrary generalized
inverse can be used,

b) Mg/ (Mp CMp/)*Mp = (Mp.CMp/ )T,

¢) (Mp.CMp/)* =C~! - C~!B/(BC™'B')"'BCL

After some calculations we get

WKpy = WMp [Mp W' (Mz55Mz)*WMp/]"

x MpW'{s3! - S7'Z(Z'S;'2) 1 Z/S 5} (Y — Wh)
=W[Mp W (Mz2:Mz)"WMp/ "W/ (MzZsMz)" (Y — W§p).
Thus _
WKpy = WMp CMp/| "W (MzE;Mz)* (Y — Wgp)
=WI[I-C !B (BC'B')"!B]JCT'W'(MzZyMz) " (Y — W5),
and _ _
Wg =Wp+ WKpy
=Wpg, + WI-C !B/(BC™'B) 'B]C'W'(MzZ;Mz)tY
-W[I-C™'B'(BC!B') " 'B|C!'W'(MzZsMz)*Wp
=W[I-C !B (BC!B) 'B]JC'W'(MzZyMz)"Y
+ WC™'B'(BC™'B')"'Bg,
=W[I-C'B(BC'B)"!'B|f - WC™!B'(BC™'B')" b,
where

B =W (MzZyMz)"W]| W/ (MzZsMz)tY = CT!'W/(MzZsM2) Y,
is the 9-LBLUE of § in the regular linear model without constraints.
Zr = (Z(Z'S;'Z) ' 2S5 + Z(Z'512) 7' 2'S 5 W (M CM /) *

x WE3lZ(Z's;'2) 12/ s 5t
—Z(Z2'S;'Z) ' 2’ 'W (M p CMp/ ) TW'ES (Y — W)
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= 7(Z's;'2)"'Z's; - W(C™ - C'B/(BC™'B/)"'BC )W's; M’ |
x (Y = W) = Z(Z'S;'2)7'2'S; (1 - WC'W'S;1M5? )Y
+Z(Z'S;'Z)'Z's;'WCT B (BCT'B/) " 'BCTIW/S; ' ML? Y

~Z(Z's;'2)"'Z's; [1I-W(C™'~C~'B/(BC™'B')"'BC 1 )W'S;'M}° |W5,

=Zk+Z(Z'2;'2) ' Z'S;'WCTIB'(BC™'B) ' BC'W/(MzZyMz)TY
~Z(Z'S5'2) 2 S W+ Z(Z'E Z) T2 S ' WCT W (M2 9 M z) YW 3,
- Z(2's3'2)7'Z2's;'WCTIB/(BCT'B/) ' BCT W/ (M2 5,Mz) T Wi
=Zk+Z(2'S3'2)7'2's;'WCIB/(BC™'B')!Bj
+Z(Z'%;'2)"'Z's,;'WC'B/(BC™'B')"'b
=Zk+Z(Z'S;'2)7'2'S;'WCT'B/(BC™'B') "![b + Bj].
As var(f) = C™1, is easy to determine var(é). O

Theorem 3 In the reqular model (1) with constraints (2) on the useful param-
eters is the statistic g'Y the UBLUE of its expectation if and only if

P P
g € = Ker (Z ViMw,z)Vi + ZV,-MZPVAl’ﬁfW,MZW)_IB,Vi) @

=1 =1
Proof Model (1) with constraints (2) is equivalent to the regular linear model
[Y ~ WBo, (WK, 2) (Z) ,20] :
where vector 3y and the matrix Kp are given in the proof of the Theorem 2.

According to [2, Theorem 1.2.1] the statistic g'(Y — W) is the UBLUE of its
expectation iff

=1

P
g € Ker |:Z V'iM(WKByZ)Vi:l .

As
Mwkp,z) =1 -Pwkp,z) =1-Pwmg z)
we use
Pwmy,z) = (WMp, Z)[(WMp:, Z) (WMp, Z)]"(WMp, Z)
_ MBIW/WMB/; MBIWIZ B MBIW,
- (WMB’a Z) [ Z,WMB/; ZIZ Z/ .
Thus

B, B Mg W'
Por =W 2 210 22| (M),
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where
By = [MpW'(I1-Z(Z'Z)"'Z)WMp/| =[MpWMzWMp] ,

Bis = (Byy) = - MpWMzWMp/|~ MpW'Z(Z'Z) !,
Bos = (Z'Z)"' + (Z'Z) "' Z’WMp [Mp W' Mz;WMp]~ MpW'Z(Z'Z)"".
Let us denote
D=WDM;W,
then
Pwag,z) =
= WMp (MpDMp/) " Mp W' — W'Mp (MpDMp ) *MpW'Z(Z'Z) " Z'
~ Z(Z'Z)"Z'WMp (MpDMp)"Mp W' + Z(Z'Z)"'Z'
+Z(Z'Z)"'Z'WMp (M;DMp) "Mp W'Z(Z'Z) ' Z'
= W(MpDM;p)*W' — W(Mp DMp ) "W'Z(Z'Z)~*Z'
—Z(Z'2)"'Z'W(MpDMp )t W'
+Z(Z'2)"'Z + Z(2'Z)"'Z'W(Mp DMp ) " W'Z(Z'Z) ' Z'
= W(MpDMjp)*W' — W(MpDMp/)*W'P; — Pz W(MpDMp) W’
+Pz +P;W(MpDMp ) WPy
Thus using that (see [4, Lemmal)
M w,z) = Mz — MzPy?,
we get
Mwkg,z) =1 - Pwmg,2)
=I-P; - W(MpDMp ) WMz +P;W(MpDMp)"W'(I-Py)
=Mj; — W(MpDMp/)*W'Myz + Pz W(MpDMp) WMz
=Mz -M,W[D"!-D !B (BD'B')'BD'|WMz
=Mz - MzW(W'MzW) WMz
+ MZW(W’MZW)‘IB'[B(W’MZW)-lB’)‘lB(W’MZW)—lw'MZ
= (Mz — MzP§?) + MzPyZ0 0, wy-150
=Mw,z) + MZp%fW'MZW)—IB"
Finally ,
Ker [Z ViM(WKB’Z)V{\

i=1

14 P
= Ker [Z VzM{W,Z)vz + ZVi(MZP%?W'Mzw)_IB')V{\ .

1=1 =1
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Notation 1 Let N be such matrix that

14 P
%(N) = ¥= Ker |:Z VzM(W,Z)Vz + ZVi(MZP%?W'MzW)"IB’)Vi

i=1 i=1

Theorem 4 In the regular model (1) with constraints (2) the function

()2
() ()

Proof (see (2, Theorem 2.1.4]) The UBLUE of the function f’ (g) exists iff

there exists a vector
g € = .#(N) and a number c € R! such that

has its UBLUE iff

K

f/ (i) =g'(W,Z) (ﬁ> +c, VBeRB, VkeR,
what is equivalent to

(F1,£2) (ﬁO +KK’”) =g'(W,2) (ﬁ‘) +HKB’Y) +e,

i.e. equivalent to
£180=g'Wg +c¢,

together with
f,=2'g & Kpfi=KzW'g. (6)

The number ¢ always exists.
a) If
f W'N, B’
(&) c(Tn0)
then exists a vector u = <El > such that
2

fi, = W'Nu; + B'uz, & f, =Z'Nuj.
Thus the vector g = Nu; € #(N) exists such that
K/Bfl = IBWIg, fz = Z,g,

i.e. (6) is fulfilled.
b) Conversely let the vector g € .#(N) exist, such that (6) holds:

Kpf, =KyW'g, & f,=27g.
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Then f; € #(Z'N) and
fie{ve R : Wig+[I-(Kp) (Kp)v},
since W'g is a particular solution of the equation K'zf; = Kz W'g. As
A1 - (Kp)™ (Kp)] = #(B),

the vector f; = W'g + B’v = W/Nu + B'v belongs to .#(W'N,B’), i.e.

£, W'N, B’
(8) (o)
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