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Abs trac t 

In this paper, we consider a variant of the isoperimetric inequalities 
in lattices. We characterize polyominoes in 2-dimensional square lattices 
which maximize area for a fixed perimeter. 

From this characterization, we can give the 'explicit' values of the 
smallest perimeter of a polyomino with fixed area. This last problem 
corresponds to the usual isoperimetrical problem. 

Moreover, we propose to apply our characterization in order to solve a 
Golomb-type pentomino problem for the plane. Find the minimum density 
of unit square to be placed on the plane so as to exclude all polyominoes 
of a fixed area. 

If we consider polyominoes of area 5 and we consider the chessboard 
instead of the plane, then the 'previous problem is known as a Pentomino 
Exclusion Problem due to Golomb. 

Our characterization allows one to solve this problem for some values 
of the fixed area. 

K e y w o r d s : Tilings, isoperimetrical inequality, Pen tomino Exclu
sion Prob lem . 

2000 M a t h e m a t i c s Subjec t Class ifica t ion: 52C99 

63 



64 Sylvain GRAVIER, Charles PAYAN 

1 Introduction 

In this paper, a polyomino is a finite set (not necessary connected) of unit 
squares centered on the grid Z n . The interior-boundary Sint(P) of a polyomino 
P is the set of squares of P having a common edge with the 'exterior' of P . 
The exterior boundary Sext(P) of a polyomino P is the interior boundary of the 
complement of P . The perimeter of a polyomino P is \Sint(P)\. For a given 
polyomino P , A(P) denotes the area of P . 

Consider the adjacency relations a and /3, which define what are usually 
called 8-connectivity and 4-connectivity respectively in Discrete Geometry, be
tween unit squares in Z2: we have CaC (resp. C/3C) iff C and C have a 
common vertex (resp. edge). 

Here, we are interested in the following question (Q): Suppose we are given 
a positive integer n. What are the polyominoes of perimeter n with maximum 
area? 

This question is related to an isoperimetrical problem (P) : What is the 
least perimeter of a polyomino of a given area? This last question was first 
settled for any n by D.-L. Wang and P. Wang [7] in Z™; an alternative proof 
is proposed by B. Bollobas and I. Leader [2] in order to generalize Harper's 
theorem. Nevertheless, these results don't yield any information on the 'shape' 
of the optimal polyominoes (for instance uniqueness of the minimal shapes for 
specific values of the area). 

L. Alonso and R. Cerf [1] solved the question (Q) for another kind of perime
ter: the length (in Z2) or the area (in Z3) of the boundary. 

Notice that in the continuous case the two questions (Q) and (P) are equiv
alent (by similarity). 

In Section 2, we solve (Q) for the 2-dimensional case. In Section 4, we 
propose an application of this result in order to solve a Golomb-type Pentomino 
Exclusion problem (G) for the plane: Find the minimum density of unit squares 
to be placed on the plane so as to exclude all polyominoes of a fixed area. 

If we consider polyominoes of area 5 and we consider the chessboard instead 
of the plane then the previous problem is known as the Pentomino Problem due 
to Golomb [5]. 

Our characterization of isoperimetrical shapes allows to solve this problem 
for some values of the fixed area. 

2 Maximizing the area for a given perimeter 

The proofs of the results mentioned in this section are in the next section. 
We need to introduce some preliminary definitions (see Figure 1). For a 

given polyomino P , we can associate the graph G(P) = (V, E) defined by V = 
{p center of a unit square in P } and E — {UV\UaV}. A vertex v of G(P) can 
be seen as a unit square of Z2 , so for brevity sometimes v should be seen as the 
unique corresponding unit square. Moreover, G(Z2) is usually called in graph 
theoretical language the total infinite complete grid graph which can be defined 
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as a total product of two infinite paths. Then: 

• The interior-shape (respectively exterior-shape) of a polyomino P is the 
graph Gint(P) = G(5int(P)) (resp. Gext(P) = G(Sext(P))); 

• An isolable unit square u of a polyomino P is a unit square such that 
the polyomino Q = P — u + D, where v G Z — (P U ( ^ ^ ( P ) ) , satisfies 
\5int(P)\ = \5int(Q)\. 

• The undress operator applied to a polyomino P gives the polyomino 
UF>(P) = P - <W(P). For g > 1, we denote UD^(P) = UD(UD«~l(P)) 
and by convention UDX(P) = UD(P). 

For convenience, we let P n be a polyomino with perimeter n which maximizes 
the area. 

UD 

Figure 1: A polyomino P, the graphs Gint(P) and Gext(P), and the polyomino 
UD(P). 

Theorem 1 For n — 1,2 and 3. a P n consists of n distinct unit squares. For 
n = 4, the Pn is a cross (see Figure 2). For n = 5. a Pn consists of a disjoint 
union of a cross and a unit square. 

If n = 4g + r > 6 and 0 < r < 3. then Cr = UDq(Pn) where CQ is the cross, 
C\ is the fish, C<i is the twins or the domino, and C3 is the stair (see Figure 2). 

Theorem 2 The area of a Pn with n = 4g + r > 0 with 0 < r < 3. is given by 
the following function: 

A(Pn 

2g2 + 2g + l if r = 0, 
2g2 + 3g + l ż/r = l, 
2g2 + 4g + 2 if r = 2, 
2g2 + 5g + 3 i/r = 3. 

In order to describe the shape of an optimal polyomino, we need some ad
ditional definitions. 

A cycle in a graph G is a sequence of vertices Vo? î>^2> • • • ?̂ fc such that 
ViVi+i (the indices have to be read modulo k) is an edge of G for all i = 1, . . . , k. 
A chord in a cycle L>o,.. •, Vk is an edge ViVj with j ^ i + 1. 

Observe that in G there are four type of edges (see Figure 3): 
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Twins 

Domino 

Stair Cross 

Figure 2: Extremal configurations. 

\ i v / -

Figure 3: Type of edges in G. 

• A left edge of G, denoted by l, is an edge uv where u = (xu,yu) and 
v= (xu-l,yu + l); 

• A right edge of G, denoted by r, is an edge uv where u = (xu,yu) and 
v = (xu + l}yu + l); 

• A horizontal edge of G, denoted by ft, is an edge uv where u = (xu,yu) 
*ndv = (xu + l,yu); 

• A vertical edge of G, denoted by v, is an edge nL> where n = (xUJyu) and 
v = (-ctt,2/tt + l ) . 

Observe that a cycle of G can be completely characterized by a circular word 
(by a clockwise orientation of the cycle) on the alphabet {l, r, ft, D}. 

Theorem 3 Ifn = 4g + r > 6 and 0 < r < 3? ^ften Gint(Pn) is a cycle (possibly 
with chords) where the cycle obtained after removing the chords ofGint(Pn) can 
be described, up to rotation, by the words: 

lqrqlqrq if r = 0 

hlq~lvrqlqrq if r = 1 
hlq-lrq-lhlq-lrq-l QT ^q-1^^-1 {f r = 2 

ftl^^r9"1/^-1 if r = 3. 
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3 Proofs of main results 

Let P be a polyomino of perimeter n which maximizes area. Let G = G(P), 
Gint = Gint(P) and Gecxt - Gext(P). We claim that: 

We may assume that any connected component G of cardinality 
at least 2 has no isolable unit square. (i) 

Indeed, in the opposite case, let v be an isolable unit square of a connected 
component of G, and let it be a unit square of Z — (P U Sext(P)). Then the 
polyomino Q = P — v + u has the same area and the same perimeter as P. 

From (1), we assume that any connected component G of P has no isolable 
unit square. Using this assumption, we study the geometrical shape of a con
nected component of G. 

We consider now the four types of configuration described in Figure 4: 

• A oblique 3-path is a path (a,u, b) G G such that, up to rotation, a = 
(xu - 1, yu + 1), it = (xu + 1, yu + 1) and b = (xu, yu) and (xu, yu + 1) £ P ; 

• A semi-oblique 3-path is a path (a, u, b) G G such , up to rotation, that 
a = ( a ; u - l , y u + l),Tx= (xu,yu) and b = (xu + l,yu) and (xuryu + l) 0 P ; 

• A right 3-path is a path (a, u, b) G G such that , up to rotation, a = 
(xu ~ 1,yu),u = (xUiyu) and b = (xu + 1,yu) and (z u ,y u + 1) 0 P ; 

• A boundary triangle is a complete graph on 3 vertices {a, it, b} belonging 
to Gint. 

Obh 

N 
c З-i 

§ 
эаth 

<£> 

Semi-oblic 3-path 

s Уўў 

V —© 

Ш ь-
Right 3-path Boundary triangle 

Figure 4: Forbiden configurations. 

Observe that if there is neither an oblique nor a semi-oblique 3-path in G and 
if P has no hole then Gint is a 'convex' cycle with possible chord (that is, a 
convex polygon). 

Lemma 1 We may assume that any connected component of Gint with no 
isolable unit square has neither hole, nor oblique 3-path, nor semi-oblique 3-
path, nor right 3-path, nor boundary triangle. 

Proof Let C be any connected component of G. We assume that C has no 
isolable unit square (by Claim (1)). This implies that Gint(C) has no vertex 
cutset. We claim that: 

C has no hole. (2) 

Indeed, if C has a hole H then we construct a polyomino Q by filling this hole 
and adding possible unit squares of Z 2 — (P U H) in order to have the same 
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perimeter as P . So we obtain a contradiction to the maximality of P , since 
A(Q) > A(P) + A ( H ) > A(P) . 

Assume that there exists either an oblique or a semi-oblique or a right 3-path 
(a,it,b) in Gint(C) with u = (xu,yu) and (xu,yu + 1) ^ P . 

If there exists another path (v\ — a, v 2 , . . . , Vk = 6) from a to b where 
Vi Vi 7̂  li in G(C) then by (2), the unit squares (xu,yu — 1), (xu — l,Htt) and 
(xtt + l,Htt) belong to C. 

Let D = (xU)yu + 1). We construct the polyomino Q obtained from P + v 
by adding possible unit squares of Z — (P + v) in order to have same perimeter 
than P . By previous remarks the polyomino Q has same perimeter than P and 
A(Q) > A(P) + 1, which contradicts the maximality of P . 

Now suppose that u is a vertex-cutset. First, observe that we may assume 
that C is connected in (3 adjacency (for otherwise we move the /3-connected 
components of C in order to obtain a new polyomino with only components /? 
connected and with same area and perimeter than P ) . 

By /3-adjacency and since C has no hole, we have that (xu — l,y t t) and 
(xu + l,y t t) belong to C. And so since u is a vertex-cutset, (xu,yu — 1) does 
not belong to C, and C — u has two /3-connected components C\ and C2 with 
(xu - l,u t t) G C\ and (xu + l,y t t) G C2. 

We construct a polyomino Q obtained from P , by translation of C2 (each 
unit square of C2 translated by the vector (—1,0)), keeping C\ and all the other 
components of P and adding possible unit squares in Z2 — (P U 5ext(P)) (at 
least one which replaces u) in order to have the same perimeter than P . 

Observe that \5int(C\ U C2) | > \Sint(C)\ - 1 if and only if (xu - l,Htt) G 
Sint(C\) O UD(C) or (xu + l,Htt) G < W C 2 ) n UD(C). And now, remark that 
|<5mt(Ci U C2 | < \Sint(C)\ - 1 where C2 denotes the translated of C2 by the 
vector ( — 1, 0), since (xu + 1, yu) + ( — 1,0) = u and since u 0 C\ U C2. Hence Q 
has same perimeter and area greater or equal than P . 

Assume now that {a,u, b} with a = (xu,yu — l ) , u = (xu,yu) and b = 
(xtt + l,y t t) induces a triangle in Gint(C). Since w belongs to Gint(C) then 
without loss of generality, we may assume that (xu — l,Htt) ^ G. But now, 
since Gint(C) has no right 3-path, then (xt t, yu +1) ^ G. Thus, it represents an 
isolable unit square of C, which contradicts the hypothesis. • 

Let C be a connected component of G with no isolable unit square. Check
ing for the small values of | ^ n i ( C ) | , we can verify that if \Sint(C)\ > 1 then 
|^mt(C)| > 4. Moreover, from Lemma 1, the interior boundary of C is a con
vex cycle with possible chords. Observe that by Lemma 1, the word describing 
Gint(C) does not contain hh, vv, hv or vh. Thus, up to rotation, there exist 
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four positive integers p, g, s, t such that (see Figure 5): 

Gint(C) - {chords} 

f (Si) lprqlar\ or 
(5 2) hlprqlar\ or 
(5 3) hlpvrqlar\ or 
(5 4) hlprqhlar\ or 
(5 5) hlpvrqhlar\ or 

l (5 6) hlpvrqhlsvrť. 

ÍL ,P 

Figure 5: Optimal shapes. 

Lemma 2 For am/ polyomino of boundary C described by a word of type (Sk) 
for some k G {1 , . . . , 6} where p, g, 5 and £ are integers greater than 1. we have 
\6int(C)\ = \6int(UD(C))\+4. 

Proof Assume that C is of type (Sk) for some k G { 1 , . . . , 6}, and let p, g, 5 
and t be positive integers of the word associated to (5^). We claim that: 

UD(C) is of type Sk with p — l ,g — 1,5 — 1 and £ — 1. (3) 

Indeed, observe that an h or v path in C remains an h or D path respectively in 
UD(C)] and a lu or r u path becomes a P " 1 or a r^" 1 path in UD(C). 

If p, g, s and £ are greater than 1 then the paths of UD(C) described in the 
proof of (3) are distinct, so the lemma follows from (3). • 
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A nice shape (S) is one of the following shapes, up to rotation, for some 
a > 1: 

' (5i) laralara, or 

(Si)' lara"1lara'1, or 

(5) = I (5 3) hla~lvralara, or 

(S3y hla'1vra-1lara'1, or 

k (5 4) hlarahlara. 

Observe that if a = 1, then (5i) is a Cross, (Si) ' is the Twins, (53) is a Fish, 
( 5 3 ) ; is a Stair, (54) is a Domino. 

Lemma 3 The area of a polyomino P with a nice shape (S) and for some a > 1 
is given by: 

' 2 a 2 + 2a + l if (S) = (Sx) 

2a2 + a if (S) = (S3) 

2a2 + 3a + 1 i/ (5) = (S 3 ) ' 

[ 2 a 2 i / ( S ) E E ( S i ) ' or(S4) 

Д(P) = { 

Proof First observe that as (3) in the proof of Lemma 2, the polyominoes 
described in Figure 2 are obtained by undressing from one of the polyominoes 
of a nice shape. 

Now Lemma 3 follows by simple computation from Lemma 2. • 

Now, we are ready to settle one of the keys of our main results. 

Lemma 4 Let C be a connected component of G without isolable unit square 
and \C\ > 1. The polyomino d = Gint(C) — {chords} has a nice shape for 
some a > 1. 

Proof Let C be a connected component of a G(Pn) = G . To eliminate (52) 
and (55) shapes, we use a coloring argument: consider the bicoloring (as a 
chessboard) of Z 2 . Remark that a lu or ru path is monocolored; and the two 
extremes of a h or v path have distinct colors. Then a shape with an odd number 
of h and v can not describe the boundary of a polyomino. 

For (Si), (53), (S4) and (56) shapes, using elementary geometrical arguments 
we can see that: 
— For (Si), (S4) and (SQ), we must have p = s and q = t, 
— for (53), we must have p + 1 = s and q = t. 

We may assume that min{p, q, s,t} = 1. For otherwise, we prove Lemma 4 
for UDk~1(Ci) where k = min {p, q, s, t}, and conclude with Lemma 2. 

To eliminate the (SQ) shape, we may assume (by symmetry) that the type of 
d is (S6) and q > p = 1. Then A(C) = 3 ( g + l ) + 2(g + 2) and \d\ = 2 (g+l) + 4. 
We choose the polyomino C of a nice shape (S) = (Si) with a = ^±s if q [s 

odd or C has nice shape (S) = (Si)7 with a = £ ~ if q is even. In any case, we 
obtain by Lemma 3, that A(C) > A(C) and \5int(C)\ = \d\. 

To achieve the proof of Lemma 4, we consider the two following cases: 
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Case 1: p < q. 
We obtain that d is described by the word lrqlrq if d is of type (5i), 

hlvrql2rq if d is of type (53), hlrqhlrq if C% is of type (54), hlvrqhlvrq if C, is 
of type (56). 

If the type of d is (5i) and g > p + 1 = 2 then A(C) = 2(g + 1) + q and 
|Ct-| = 2(q + 1). If g is odd then we choose the polyomino C of nice shape 
(5) = (5i) with a = ^y-, otherwise we choose the polyomino C of a nice 
shape (5) = (5i) ' with a = 3^-. In any case, we obtain by Lemma 3, that 
A(C)>A(C)<md\5int(C)\ = \d\. 

If the type of d is (54) and g > p = 1 then A(C) = 2(g + 1) + 2g + 2 
and \Ci\ = 2(g + 1) + 2. We conclude as in the previous case, with nice shape 
(5) = (5i) and a = %~- if g is even and nice shape (5) = (5i) ' and a = q~^- if 
g is odd. 

If the type of d is (53) and g > p = 2 then A(C) = 5(g + 1) and \d\ = 
2(g + 1) + 3. We conclude as in the previouses cases, with nice shape (5) = (53) 
and a = q-~- if g is odd and nice shape (5) = (Ss)' and a = --|- if g is even. 
Case 2 : p > q. 

Remark that by symetry with case 1, we have only to check in the case 
when the type of d is (53) = hlp~lvrlpr and p > q + 1 = 2. Then A(C) = 
2(p + 1) + 2(p + 2) and \d\ = p + 1 + p + 2 + 2 = 2(p + 2) + 1. We conclude as 
in the previouses cases, with nice shape (5) = (53) and a = ^ ^ if p is odd and 
nice shape (5) = (S^)' and a = - ^ - if p is even. 

In any cases, we obtain a polyomino with same perimeter but with largest 
area, which contradicts the maximality of Pn. Q 

Lemma 5 For any n > 6. G(Pn) is connected. 

Proof Let n be the smallest integer such that there exists a non connected 
Pn. Assume on the contrary that n > 6. Let C i , . . . , Ct be t > 2 connected 
components of G(Pn). 

If there does not exist some C; which is not a square then it easy to see that 
n < 3. Hence, since n > 6, we may assume now that Cz- has no isolable unit 
square for i = 1 , . . . , a for some a > 0 (perhaps a = t); and Cj is a square for 
j = a + 1 , . . . , t. Thus, by Lemma 4, each C,'s for i < a, can be described by 
a nice shape (5). Let pi = \8{nt(C)\. Remark that pi > 4 Vi < a. Without 
loss of generality, we may assume that pi + p2 + p 3 > 6 (with by convention 
p 3 = 0 if t = 2). Then by Lemma 3, A(P p i + P 2 + P 3 ) > 2(px + p 2 + p 3 ) 2 and 
A(PP1) + A(PP2) + A(PP3) < 2(p\ + p ! +p2) + 3(pi + p 2 + p 3 ) + 2. And, so 
A(-Ppi+P2+p3) > A(PP l) + A(PP2) + A(PP 3), which contradicts the maximality 
of Pn. • 

Theorem 1 follows from Lemmas 2 and 5. 
Theorem 2 follows from Lemmas 3 and 5. 
Theorem 3 follows from Lemmas 4 and 5. n 
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4 Applications 

We will use here the notations and definitions given in Introduction and in 
Section 2. 

4.1 Isoperimetrical problem (P) 

From the results of Section 2, we can solve the problem (P) in Z with sharped 
values of perimeter. We denote Pn a polyomino of perimeter n which maximizes 
its area. 

Theorem 4 Any polyomino P of area A satisfies \6int(P)\ > n where n is 
defined by A ( P n - i ) < A < A ( P n ) . 

Moreover, for any value of A > 5 there exist polyominoes of perimeter n. 

Proof The inequality is clear from the definition of Pn. 

For small values of n, it is clear that there exist such polyominoes as defined 
in the theorem. Assume now that n — 1 > 6. By Theorem 2, P n - i has a nice 
shape (S) (see Section 3). Let u = A - A ( P n _ i ) and let n = 4q + r with 
0 < r < 3. We may assume that u > 0. 

If (S) = (Si) then by Theorem 2, u < q. The polyomino with shape de
scribed by hlu-lvlq~u rqlqrq has the desired property (see Figure 6). 

If (S) = (S3) then by Theorem 2, u < q + 1. The polyomino with shape 
described by hlqllruhrq~u-llqrq has the desired property (see Figure 6). 

If (S) = (S4) then by Theorem 2, u < q + 1. The polyomino with shape 
described by b^^iru^-u^ h a s t h e desired p r 0 p e r t y (see Figure 6). 

If (S) = (33)' then by Theorem 2, u < q + 1. The polyomino with shape 
described by hlq~~lrqlqruhrq-u-1 has the desired property (see Figure 6). D 

щ 
s% 

Figure 6: Extremal polyomino (when u = 3 in the proof of Theorem 4). 
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Observe that by Lemma 2, we can establish an analogue of Theorem 4 for 
the exterior boundary: 

Theorem 5 Any polyomino P of area A satisfies \Sext(P)\ > n 4- 4 where n is 
defined by A(P n _i) < A < A(P n ) . 

Moreover, for any value of A > 1 there exist polyominoes of (exterior) 
perimeter n + 4. • 

4.2 Golomb type problem (G) 

We denote by ( G A ) the problem: Find the minimum density of unit square to 
be placed on the plane so as to exclude all polyominoes of area > A. 

admissible solution of ( G A ) problem is a set <S of squares centered on Z 
such that any connected component in (3 adjacency of E 2 — <S has area less than 
or equal to A. We color 'black' the squares belonging to an admissible solution 
<S and 'white' the others. 

We now need a measure called 'density', of an admissible solution of ( G A ) 
in order to compare two admissible solutions. If T is a finite subset of Z2 then 
a natural way to define the density of <S relative to T is L J . We show now a 
way to extend this definition to the infinite case: 

For an admissible solution <S of ( G A ) , observe that if we remove one 'crossing 
edge' of each K4 (complete graph on 4 vertices) in G(S), then the resulting 
plane graph G'(S) defines a tiling of R2 (see Figure 7) where the tiles are the 
faces of Gf(S). For a face (or a tile) (C) of Gf(S) there corresponds a unique 
polyomino C where 5ext(C) C <S. 

Some of these tiles correspond to some connected components (in /3 con
nectivity) of Z — <S. Some others are triangles corresponding to 3 mutually 
adjacent elements of <S (in this case C = 0). 

Let D c M 2 . The density of an admissible solution S of ( G A ) relative to D 
is 

„ „ _N 'black' area of D 
d{S>D)= 'white' area *V 

where D is the union of all faces of G'(<S) which intersect D. 
Notice that D defines a polyomino P with some unit square in <S; moreover 

all the squares in the interior boundary of P belong to <S. Moreover, observe 
that d(S,D) is well-defined since each face of G'(S) defines a polyomino with 
bounded area. 

Let Br be a ball of M2 of radius r. Then 

d(S) ^ l imin f d(S,Br) 

and 
d(<S) = limsup<i(<S, Br), 

r—>oo 

are called the lower and upper density respectively. 
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Figure 7: S and G'(S). 

If these two values coincide, their common value is called density d(S,D). 
This kind of definition of density is more or less standard (see for example [6]). 
We are ready now to state our result on Golomb-type problem: 

Theorem 6 Let n = 4g -f r > 5 with 0 < r < 3 be an integer such that 
A > A(Pn). If q > 1 and A — A(Pn) < [ | ] then an optimal solution S of (G&) 
satisfies: 

\Sext(Pn)\ _ 1 
d(S) > 

A(Pn) 

Moreover, for any A > A(Pn), we have: 

ă(s) < { 

\Sext(Pn)\ 
2 

A(Pn) ./г = 0,2 

\Sext(Pn)\ + l 1 

^7p^) i/ r = 1, 3 

Proof Let S be an optimal solution of ( G A ) -
Let D e l 2 and let 

D = U{(C)GG'(S) I <C)nD^0}(C)-

First we claim that: 

We may assume that any (C) has no hole. (4) 

If (C) has a hole then move it close to the exterior boundary of (C) in order to 
obtain a new face (C) with no hole. 
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If we do that for any (C) having a hole then we obtain a new admissible 
solution of ( G A ) with the same density 

Now we assume that any face of G'(S) has no hole. Using the structure of 
Z , we claim that: 

d(S,D)=^D 1 — - , (5) 

If P is the polyomino defined by D then Pick's theorem gives that the area 
of D is given by \UD(P)\ + ]5int

2
{P)l - 1 and the area of each (C) is given \C\ + 

\6ext^c^ - i? since by assumption each (C) has no hole. Now by additivity of the 

area and since D is partitionate by U(OeD(G), we have that __{C)eD ~~~% *• 
is equal to the number of squares in SHP not in the interior boundary of P , plus 
half of the number of squares in the interior boundary of P which corresponds 
to the 'black' area of D. And __<c)€D |C| is the number of squares in P not in 
<S, which corresponds to the 'white' area of D. 

We now prove the lower bounds on d(S). From (5), we have: 

l*cx.(C)i _ j 

d<*r)^S&-*!-—• (6) 

Let (C) be a face of G'(S). 
If |C| < A(Pn) then let p = |5ex t(C)|. 
If p > n + 4 then 

_. _ i n+4 __ i 
2 \ 2 

nCr-~A(^y 
If p < n + 4 then by Theorem 5, |C| < A(Pp_4) . Let 5 = n + 4 - p. Now 

by Theorem 2, \C\ < A(Pp_4) < A(Pn) - qs and A(Pn) < q(n + 2) if g > 1. 
Hence, if q > 1 then 

£ -i n+4—. -1 n-f 4 _ i 
O 1 O L r, 1 

|C| - A(P n ) -a_ - A(Pn) ' 

If A > \C\ > A(Pn) then by Theorem 5 we have that \8ext(C)\ > n + 5. So 

l^e_.(G)| _ - n+5 _ -, 

|C| - A • 

If A - A(P n) <["§] , then by an easy computation based on the values of A(P n ) 
given in Theorem 2, we have that 

n+5 _ | n+4 _ | 1 Sext(Pn)\ _ | 

" A " - _IP0" = A(Pn) ' 

In each case, we obtain by (6), that if q > 1 and A - A(P n ) < [§] then 

_(«5)> 
A(-Pn) 
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We prove now the upper bounds on d(S). By (5), we have: 

_ _ _ _ _ _ i 

d(S,D) < max_ 
(C)ЄĎ \c\ 

(7) 

Now assume that r = 0,2. In these case the shapes (Si), (Si)' and (S4) are 
respectively a square, a rectangle and an hexagon. In each case, we know tilings 
of Z 2 by these shapes and, by (7), the density of such tilings is precisely 

_ _ _ _ _ _ _ i 

A ( P n ) 

Now assume that r = 1,3. In these case the shapes (S3) and (S^)' are 
described by the words hla"1vralara and hla~1vra~1lara~1. In each case, we 
can not tile Z 2 with tiles of these shapes. This is why we obtain only a lower 
bound of the upper density in these cases. We can easily find a tiling of Z 2 by 
tiles with shape hlahralara and hlahra"Hara"1 (see Figure 8). Observe that, 
by (7), such a tiling has density 

_ _ _ _ _ _ _ _ 1 

2 i. D 
A(Pn) 

Figure 8: Tilings with optimal polyominoes. 

A direct consequence of the proof of Theorem 6 is that when r = 0, 2, q > 1 
and when A — A(P n ) < [ | ] then the density of an optimal solution of ( G A ) 
exists and is equal to 

______ _ 1 

A(Pn) ' 
Moreover this density is independant of the position of the ball Br and we 

should choose another domain instead of a ball to define density. 
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5 Conclusion 

It would be interesting to adapt the technique developed in Section 3 in order 
to solve some isoperimetrical problems in other lattices such as hexagonal or 
triangular lattices. 

We proved that there exists a family of 5 polyominoes in Z such that any 
polyomino in Z2 of maximum area for a fixed perimeter can be obtained (when 
the perimeter is large enough) from an element of this family by an undressing 
procedure. 

We can ask what happens in higher dimensions. But note that already in 
the 3-dimensional case, the family seems to be infinite. Indeed, observe that in 
any dimension n the 'dressing' (r times) of an n-cube corresponds to the sphere 
of radius r in Z n . Moreover, probably a sphere is in any dimension an optimal 
shape for the problem (Q). But, unfortunately the difference of the perimeters 
between two spheres of consecutive radii depends on the smallest radius of these 
two spheres and it is not as in 2-dimensional case a constant (+4 in Z2). 

The Golomb type problem has been investigated in the finite case (a finite 
sub grid k x n of Z ) [3, 4, 5]. Note that Theorem 6 allows one to obtain some 
asymptotic results on Golomb's problem for some appropriate values of k. 

The density defined in previous section allows us to compare tilings of R 
when the tiles are polygons with vertices belonging to a lattice. 
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