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Abstract 

This paper treats the interpolation of convex histogram by strictly 
convex polynomial splines of arbitrary degree. First the existence theorem 
for some special problem is proved. Finally the general existence theorem 
for splines of order k on k — 1 fold refined mesh is presented. 
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togram. 
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1 Introduction 

In various applications it is often necessary to construct a smooth function 
that interpolates prescribed data and preserves some shape properties of them. 
Though many papers were devoted to such problems in the last years only few 
papers treats the problems of convexity (or concavity) preserving interpolation 
of histogram. Some of such results based on the existence of so called histogram 
in convex position are given in [2] and [3]. But the convexity criterion based 
on the existence of histogram in convex position can eliminate some cases of 
strictly convex data because it is only sufficient condition of existence of strictly 
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convex interpolation function and is not necessary. Moreover only the proof of 
existence of the convex rational splines is given there and there is not any result 
for polynomial spline. In [4] the necessary and sufficient condition of histogram 
convexity was stateded and using it the existence of some low order splines on 
certain refined meshes was shown in [5]. The aim of this contribution is to 
prove the existence of strictly convex interpolatory spline of order k on k — 1 
fold refined mesh. 

2 Some fundamentals of J3-splines 

Definition 2.1 Let (At) = {ti} be a nondecreasing sequence (which may be 
finite, infinite or biinfinite). The i-th normalized H-spline of order k (i.e. degree 
k — 1) for knot sequence (At) denoted Bf(x) is defined by the rule 

Bki(x) = (U+k - U)[U, U+u. - . , U+k](t - x)++1 . (1) 

Theorem 2.2 The B-spline Bf(x) has the following properties: 

Bf(x)-0 forx#[ti,ti+k] 
Bf(x)>0 forxe[tuti+k] 
Bf(x)>0 forxe(tuU+k) 
B?(U)-0 ifU<ti+k-1 

Bi(U) = 1 if ti — tj+i = . . . = ti+k-i < ti+k 

Bf(U+k) = 0 ifU+i < U+k 
Bi(U+k) = 1 ifU < ti+i = U+2 = . . . = U+k 

For proof see [1]. 

Theorem 2.3 Let S(x) = ^2ib{Bf(x) be some spline on the m,esh (At). Then 
its derivatives can be computed by following rules: 

S^{x) = YJKBl~J{x) (2) 
i 

h for j = 0 

*i+k—j ~ ti 

with 

bí = { til.-1 - Vr] (3) 
1 (k - j)- i z ± for0<j <k 

For proof see [1]. 

3 Convexity of histogram 

Let us have given histogram G = {gi}f=0 on the mesh 

(Ax) : Xo < X\ < ... < xn < xn+i, with hi = Xi+\ — #;, i = 0(l)n . 

The convexity of histogram is defined by following way: 
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Definition 3.1 We say that histogram G is convex if there is convex continuous 
function / interpolating histogram G (i.e. J 1 + 1 f(x)dx = /i?;g?; for i = O(l)n) 
on the mesh (Ax). 

Let us denote (Aax) = {xi}^ U {x{ + a ^ } ^ with 0 < a» < 1 and 
let Sn(Aax) be space of linear splines on the refined mesh (Aax). Then the 
previous definition of convexity is equivalent to the following condition: 

Theorem 3.2 (Necessary and sufficient criterion of convexity) Histo
gram G is convex if and only if there is set of numbers {aj}[l_0 and cor
responding convex function Sn(x) G Sn(Aax) which interpolates histogram G. 

For proof see [4]. 

4 T h e interpolat ion by splines of order k 

4.1 T h e convexity in some special subproblem 

Let Hj, i = l(l)fc — 1 (where fc > 3) be free parameters satisfying the following 
conditions: 

0 < 2/1 < y2 < •. • < Vk-2 < J/jfe-i < 1. (4) 

Let us define the mesh (At) = {ti\ i = 0(l)3fc - 2} with: 

0 for ie { 0 , l , . . . f c - l } 

I/i-fc+i for iG {fc,fc+l,. . .2fc-2} 

1 fori G {2fc-l,2fc, . . .3fc-2} 

Let s, m, ML, Mp and G be any numbers. Let us have given the following inter
polation problem on the interval [0,1]: Find spline 

2k-2 

ѓ=0 

S(x) = ү^ btBf(3 

i=0 

of order k > 3 on the mesh (At) such that: 

/ S(x) dx = g, (5) 
Jo 

5(0) = 5, S ' ( 0 ) = m , 5 ; ,(0) = M L , S«)(0) = 0, V; Є {3,4, . . . fc-2} (6) 

5'Ч1) = M P , S«)(1) = 0, V j є { 0 , l , . . . f c - 2 } \ { 2 } (7) 

L e m m a 4.1 Let be given any numbers s,m, ML, Mp,g and any mesh (At) 
then there exists spline S(x) satisfying interpolation conditions (5)-(7) and its 
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coefficients fulfil the following rules: 

* = *+vh tv>+
 {k _ xM(fc - 2) £ § > " *=0(1)fe - 2> (8) 

j = l v M ; j = l 1=1 
2 fc_2 —i 

^( fc - l ^ fc -2 ) g d-»--i-0. . = *(l)2*-2> (9) 

A; — 2 fc-2 i ,. , fc —2 i j —1 

b,_i - fcp-553j/i+1 - -^-5353y jy i+l - (k_1)^k_2) Y.1LY1 viyw+i 
i=0 i=0 j= l ^ A ' i=0 j = l J=l 

M 2k-22k-2-i 

" (fc-l)(Pfc-2) g £ (1 - W-i--)^ - »«+---) (10) 

Proof 1. Using Theorem 2.2 we transform the conditions (6) to the conditions: 

b0 = 5 , b\ = m, b^ = ML , bj = 0 for t = 3(l)fc - 2. 

Then using Theorem 2.3 we obtain the following equations: 

s = b0, 

m = (fc_1)(^_zM5 
2/1 

_2__J _ (bi-bp) 

ML = (fc - l)(fc - 2 ) — ^ ^ — , 
2/1 

_ _ _ _ - _ ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ( b j - . 2 - 6 . - 3 ) 

0 _ _ _ _ i _-_ _ _ 2 5 i = 3(1)*: - 2. 
2/i-l 2/i-2 

Solving this system we obtain the formulas (8) for bj, i = 0(1) fc — 2. 
2. The formulas (9) for computing b^, i = fc(l)2fc — 2 we obtain in the similar 

way from the conditions (7). 
3. Using the Theorem 2.3 we can obtain the following B-spline coefficients 

of the antiderivative of S(x): 

K1 = K-i + HU+k - U)/k9 i = 0(l)2fc - 2 

Substituing it to the interpolation condition (5) we obtain the equation: 

2k-2 j 

_ ; (_; &#,+* - *,)/*) (B*(I) - 5*(o)) = <,. 
j=0 i=0 

Substituting other computed coefficients and solving this equation we get the 
formula (10) for b^-i- n 
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T h e o r e m 4.2 Let be given numbers s > 0, in < — s and gm = —s2/2m. Then 
there exist numbers ML > 0, Mp > 0, rj > 0 and numbers iji, i = l ( l )k — 1 
determining mesh (At) such that spline S(x) satisfying interpolation conditions 
(5)-(7) is strictly convex for every g 6 (gm,9m + v)-

Proo f The necessary and sufficient conditions of strict convexity are 

2fe-2 

S"(x)= 5 ]^- 2 w>o. 

Using the nonnegativity of B-spline we get the following sufficient conditions of 
convexity: b2 > 0, Vj = 2(l)2k — 2. To satisfy the strict convexity, then for each 
x there must exist the index i such that x £ suppH^ - 2 and b2 > 0. It gives the 
following sufficient conditions of strict convexity: 

b) >0,j = 2(1)2* - 2, b\ > 0, b\k._ > 0, b2
k_x > 0, b\ > 0, bl+1 > 0. (11) 

In the rest of this proof we will show that B-spline coefficient of spline S(x) 
satisfy the previous sufficient conditions (11). Substituting the known formu
las (8)-(10) for bj in the rule (3) we can compute simple formulas for some 
coefficients b2: 

Ь2 = M ь 
1 (k - í)(k - 2) 

b2i = n ,w , ^ for i = 2(l)fe - 2, 

b2 = 0, foг j = k + 2(l)2fc - 3, 

ьl - Mp 

2k-2 (k-l)(k-2)(l-yk_iy 

If ML > 0 and Mp > 0 than these coefficients satisfy the sufficient conditions 
(11). Let us denote 

fe-2 fe-2 i fe-2 / к — z к — ć i к — л \ / 

ck_x = U g - s ( І + ^ У І + I ) - ^ Г Г y (Y_YJУjУг+i+Y_Уj)) Уk-u 

^ i=0 i=0 j=l j=ì ' ' 

ck = ~4g ( + )+8[ + ( + 1 ) У ^ + i ) 
^Уk-i 1-Уi' Vž/fe-i кУk-i 1-2/1/ ^ / 

/ . fe—2 -. .. fe—2 i v 

* - 1 V îfc-i £ í V 2/fc-i 1 - 2/1 I è o j=í 1 

/ fe—2 k—2г \ I/ 

cк+1 = Ug - sJ^Уi+i - TZГл E£» í» i+ i / 1-ft 
^ i=0 i=0 7 = 1 ' * ^ 

Then the remaining coefficients can be written in the following form: 

M /k~~2 l j~~1 { j~~1 

bLi = cfc.i- ,fc_1K
L

fc_2) ( E E E » + ^ E E w + ^ ) 2=0 j = l /=1 j = l /=1 
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2fc-22fc-2-ѓ 

(fc-l)(fc-2) E E (l-У*-i-i)(l-Уł+i-*))jУ*-i, 

Ьfc = cfc + 
M L 

г_=fc j = l 

-. .. fc-2 i j - 1 

( ^ + г ^ ) S S Ç r ø i + i 
(fc-l)(fc-2) , 

* J - 1 \ a r / 1 fc-2 + ̂ SSH + (fc-i)(Pfc-2)(r^ ga-w-i-x) 
+ ( ^ + T^)E2EV-y*-J-i)(i-y,+i-*) 

M fe~2 * J ~ 1 

fo*+i = c +̂i - (fc-i)(fc_2) E £ £ « + i 
v ; v y 2=0 j = l Z=l 

, , 2k-2 2k-2-i 

- (fc_i ) (
Pfc_2)(E E (i-y*-i-i)(i-y<+i-*) 

2—fc J—-I 

+ ^ ( 1 - yfc.^o - (i - yi))) / (i - yi 

Properties (4) of numbers Hj imply that conditions b2
k_1 > 0, b2

k > 0, b|+1 > 0 
are equivalent to conditions c^-i > 0, Ck > 0, c&+i > 0, if numbers ML, Mp 
are positive and sufficiently small. 

Let be 

~s c 2(i~l)e . . _ . , 
a = — , o = gm-9i Ht = a - e + — — , for z = 1(1 fc - 1, 

m fc — 2 

where 0 < 6 < min{a, 1 — a } . Substituting it to the inequalities cjt_i > 0, 
cfc > 0, Ck+i > 0 and solving this inequalities we obtain that S G (A(e), 13(e)], 
where 

. - e 2 m 

^ = 6 ( f c - 2 ) ' 

13(e) = (-e(efc2 + 2e2fc2 - 2fce2 + 5efc + 6fc - 12 - 12eW 2 

+ 6 (fc - 2) s2 + 6(fc - 2)sm\ I Umk(k - l)(fc - 2)(2c + 1)). 

It is simple to verify that assumptions of theorem imply 

Ai \ ^ r^r \ At \ (m +s + em)(s-em) _ _. . , .. n 

A(e) > 0, B(e) - A(e) = - + ^ g - ^ > 0, ^hm A(e) = 0. 

Therefore the conditions c^_i > 0, Ck > 0 and c^+i > 0 are satisfied for all 
S G (0,/y], where 77 = min{J3(e) : 0 < e < min{a, 1 - a}} . It implies the 
statement of theorem. • 
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4.2 The general existence theorem 

Let us have given convex histogram G on the mesh 

(Ax) : XQ < xi < . . . < xn < x n + i , with hi = Xi+\ ~ x-i, i = 0(l)n. 

Let us denote 

S n f r . - O ) = lim Sn(x), 
X—>Xi — 

Sn(xi+0) = lim Su(x). 
X ~+ X i + 

Lemma 4.3 Let G be convex histogram such that there exists convex linear 
spline Sn (x) G Sn (Aax) interpolating G and satisfying S'n (xi+ 0) < Sn (xi+\ — 
0) for all i = 0(l)n and S'n(xi+1 - 0) < S'n(xl+1 + 0) for all i = 0(l)n - 1. 
Then numbers d (Vi = 0(l)n — I) can be found such that there exists convex 
spline Sn(x) £ Sn(Aax) (with c\i > ai) satisfying S'n(xi + 0) —Sn(xi - 0 ) = 6i 
for every 0 < Cj < Si. 

Proof First we will show that if Ei+\ > 0 than there exists Si > 0 and convex 
Sn(x) such that S'n(xi + 0) - Sn(xi - 0) = €i for every 0 < ê  < Si. Let be 
given any £i+i > 0 and let S\\(x) G Sn(A

ax) satisfy the following conditions 
Sn(xi) = Sn(xi), Sn(xi+i) = Sn(xi+i), S'n(xi+l - 0) = 5 ^ ( ^ + 1 - 0 ) + e i + 1 

where 0 < Ci+i < Si+\. Then from the interpolation condition Jx!
+1 Sn(x) dx = 

lngi we obtain the condition S'n(xi + 0) > S'n(xi + 0) > S'n(xi - 0) and so 

E{ = S'n(xi + 0) - ^^(ari - 0) satisfies the condition Ei > 0. 

SU(X.+0)+E.^ 

šл(x. +0)+є. 
1 1 x 1+1 ' н 

x , x + a h x. +a. h. „ x. x.+ah. x.+a.n. x. H 
1 - 1 "^i 1 1 n i 1 1 - 1 1 - 1 1 - 1 i i i i i i i 1 + 1 

Now choosing any en+i > 0 and using previous technique in sequence for all 
i = n(—1)0 the statement of the lemma is proved. • 
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Theorem 4.4 (The exis tence theorem) Let Sn(x) G Sn(/\ax) interpolat
ing G be convex and satisfy S'n(xi + 0) < Sn(xi+i - 0) for all i = 0(l)n and 
Sn(xi+i-0) < S[1(xi+i+0) for alii = 0 ( l ) n - l . Then for all k > 3 there exists 
strictly convex spline Sk-iji(x) G Ch~2[xo1xn+i] with at most k - 1 additional 
knots in every subinterval of original m,esh, which interpolates histogram G. 

Proo f Let be Sk-~i,i(xi) = Sn(xi), S'k_11(xi) = Sn(xi + 0), Sk_lx(xi) = 

Mi and S[J\ x(xi) = 0 for all j G {3,4, ...,fc - 1}, where Mi are unknown 
parameters. Let us gradually denote 

y = 

s = Sk-i,i(xi) - 5fc-i,i(xi+i) + (xi+i - xi)S'k_11(xi+i) 

m = hi \S'k_ltl(xi) - S'k^hl(xi+1)j 

9 = 9 i ~~ 2 ( 2 5 ^ - l » l ( ^ + l ) ~ hiS'k-ltl(
xi+l)) 

Si(y) = 5jfe-i,i(x) - 5^-1,1(^+1) + (xi+i - x)5fc_ i a(a;t+i) 

on each interval [xi,Xi+i]. Then on each interval [xf,a:t+i] the spline Sk-i,i(x) 
can be decomposed by the following way: Sk-i,i(x) = Si(y)+li(x), where l(x)i is 
line given by formula k(x) = 5^-1,1 (x t + i ) - (x t + i -x)5 j [ ._ 1 ) 1 (x t + i ) . Since lemma 
4.3 holds we can suppose without loss of generality that numbers .s,ra,g and 
spline Si(y) satisfy the assumptions of the theorem 4.2 and therefore there exist 
at most k — 1 additional knots such that Si(y) is convex. Using the additivity 
of spline spaces we prove the convexity for the spline Sk-i,i(x) on each interval 
[x?;,.xz+i]. To satisfy the smoothness (and so convexity) of spline Sk-i,i(x) on 

the whole interval [x0, £n+i], it is enough to put Mi = min{ y / , "^V }. • 

Remark 4.1 The similar statement stand for k = 3 too. The proof using local 
spline basis is given in [4]. 
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