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Abstract

In this paper we investigate the existence of mild solutions defined on
the semiinfinite interval for initial value problems for a class of first and
second order semilinear integrodifferential equations in Banach spaces.
The results are based on the Schauder-Tychonoff fixed point theorem.
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1 Introduction
In the few past years several books and papers have been devoted to study

the existence on compact intervals of strong, classical and mild solutions for
differential equations in abstract spaces. We refer to the books of Goldstein (8],
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14 M. BENCHOHRA, S. K. NTOUYAS

Heikkila and Lakshmikantham [9], Ladas and Lakshmikantham [11] and Pazy
[13], to the papers of Ghisi [7], Heikkila and Lakshmikantham [10] and Laksh-
mikantham and Leela [12].

In Section 3 we study the existence of mild solutions, defined on a semiinfinite
interval J = [0, 00), for the Initial Value Problems (IVP) for semilinear evolution
integrodifferential equations of the form

t
yume@%Awam) teJ =[0,00) W

y(0) + g(y) = vo, (2)
where f : JXEXE - E, K:DxE - E, D={({ts)€JxJ:t>s}
g € C(C(J,E), E), are given functions, yo € E, A is the infinitesimal generator
of a strongly continuous semigroup T'(t), t > 0 and E a real Banach space with
norm | - |.
Section 4 is devoted to the study of the second order semilinear integroditferential
equation of the form

t
M—w:fQ%/mem) te = [0,00), 3)
JO

y(0)+9) =v0, ¥'(0)=m (4)
where K, yo, g and f are as in problem (1)-(2), A is a linear infinitesimal
generator of a strongly continuous cosine family {C(¢) : ¢t € R} in the Banach
space E and y; € F.

Recently, the authors studied existence results, for ordinary differential equa-
tions with nonlocal conditions, of first and second order, in [1] and [2] respec-
tively. Here we extend these results to integrodifferential equations. Nonlocal
evolution problems were initiated by Byszewski [3]. For the importance of non-
local conditions in many areas of applied mathematics we refer to [3] and the
references cited therein.

The method we are going to use is to reduce the existence of mild solutions
to problems (1)-(2) and (3)—(4) to the search for fixed points of a suitable map
on a Fréchet space C(J, E). In order to prove the existence of fixed points, we
shall rely on the theorem of Schauder-Tychonoff.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.

Jm = [0,tm] where t; <ty < ... <ty T 00,

C(J,E) is the linear metric Fréchet space of continuous functions from J
into E with the metric (see Corduneanu [4])

[o¢]
27"y = 2lIm
= 2 7™ foreach y,z € C(J,E),

where ||[y|lm == sup{|y(t)| : t € Jm}.
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B(E) denotes the Banach space of bounded linear operators from E into E.

A strongly measurable function y : J — E is Bochner integrable if and only
if |y| is Lebesgue integrable. (For properties of the Bochner integral see Yosida
[16)).

L'(J, E) denotes the linear space of equivalence classes of strongly measur-
able functions y : J — F which are Bochner integrable normed by

[0
1y|L1:/ ly(t)|dt for all y € L'(J, E).
0

The convergence in C(J, E) is the uniform convergence on compact intervals,
i.e. y; = yin C(J, E) if and only if for each m € N, ||ly; = y|l;, = 0 in C(Jp, E)
as j — oo.

M C C(J,E) is a bounded set if and only if there exists a positive function
¢ € C(J,Ry) such that

ly(t)]| < ¢(t) forallte Jandallye M.

From the definition of the metric defined on the Fréchet space C(J, E) a set
M C C(J,E) is compact if and only if for each m € N, M is a compact set in
the Banach space (C(Jm, E), || - |lm)-

We say that a family {C(t) : t € R} of operators in B(E) is a strongly
continuous cosine family if

(i) C(0) =1 (I is the identity operatorin E),
(i) C(t+s)+C(t—s)=2C(t)C(s) for all 5,t € R,
(i) the map t — C(t)y is strongly continuous for each y € E;

The strongly continuous sine family {S(t) : ¢ € R}, associated to the given
strongly continuous cosine family {C(t) : ¢t € R}, is defined by

t
S(t)y:/ C(s)yds, ye€E, teR.
0

The infinitesimal generator B : E — E of a cosine family {C(¢) : t € R} is
defined by
d2
By = Eﬁc(t)y t:o.

For more details on strongly continuous cosine and sine families, we refer the
reader to the books of Goldstein [8] and Fattorini [6], and the papers of Travis
and Webb [14], [15].

The operator G : E — FE is said to be completely continuous if G(D) is
relatively compact in E for every bounded subset D C E.

Our considerations are based on the following theorem.

Theorem 1 (Schauder—Tychonoff [5], [4]) Let Q be a closed convex subset
of a locally conver Hausdorff space E. Assume that N : Q — Q is continuous

and that N(Q) is relatively compact in E. Then N has at least one fized point
in Q.
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3 First order integrodifferential equations

Definition 1 A continuous solution y(t) of the integral equation

y(t) = T(t)yo — T(D)g(y) + /0 T(t—9)f (s,(s), /0 K(s,uy()du)ds, te .

is called a mald solution of (1)-(2) on J.
Now, we are able to state and prove our main theorem. We will need the-
following assumptions:
(H1) A is the infinitesimal generator of the linear bounded and compact semi-
group T'(¢t), t > 0;

(H2) The function g is completely continuous and there exists a constant G > 0
such that |g(y)| < G for each y € C(J, E).

(H3) K is continuous in all its arguments and there exists ¢ € L*(J, Ry) such
that

t
/ K(t,s,y)ds
0

<qt)¥(ly]) foreachte Jandye€ E

where ¢ : Ry — (0, 00) is continuous and increasing with

/°° du _
1 u+v(u) -

(H4) f is continuous in all its arguments and
|f(t,u,v)| < p(t)(u| + |v]) for almost all ¢ € J and all u,v € E,
where p € L2(J,Ry).

Theorem 2 Assume that hypotheses (H1)-(H{) are satisfied. Then the prob-
lem (1)-(2) has at least one mild solution on J.

Proof We transform the problem (1)-(2) into a fixed point problem. Consider
the map, N : C(J,E) — C(J, E) defined by

t s
N = TOn-TOat)+ [ 75 (s,9), [ Kls,uy)du)ds, te
Let Q= {y € C(J,E) : |y(t)] < a(t), t € J} where

o) =17 (M [ o)t ds). a(0) = max{L o)}, M =sup{|T(0): ¢ > 0},

and

2 du _
I(z):/c m, ¢ = Mlyo| + MG.
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Clearly € is a convex subset of C'(J, E).

We shall show that Q is closed and the operator N defined on 2 has values
in © and it is compact. The proof will be given in several steps.

Step 1. Q is closed.

Let y,, € Q with ||ynllm = [|yllm (i.e. ¥ converges uniformly to y on Jp,) for
each m € {1,2,...}. Then for each fixed t € J,,, we have ||y, (t)||lm < a(t) which
implies ||y(¢)||;n < a(t). Soy € Q.

Step 2. N(Q2) C Q.

Let y € Q and fix t € J. We must show N(y) € . Let z <, then

Ny @)llm < Mlyo| + MG + M /I p(s)[ly(s)| + a(s) b (ly(s)))] ds
0

IN

Mlyo| + MG + M / " p(s) d(s)lals) + B(a(s)] ds

Il

Mlyo| + MG + / da'(s)ds = a(z),
0

a(s) du s R
/c =M / p(r) (r) dr.
Thus N(y) € 2,50 N : Q = Q.

Step 3. N is continuous.

Let yn — y in C(J, E). We will to show that N(y,) = N(y) in C(J, E).
Now, |[ynllm = ||y|lm implies that there exists r > 0 such that [[yn||m < r and
[lyllm < 7. The Lebesque dominated convergence theorem implies that

/(;tT(t ) [f (S,yn(S),/Us K(s,u,y”(u))du)

7 ( y(s), /0 K (s uy(u) du)] ds — T(t)g(yn) + T()9()

since

”N(yn) = N@)|lm = sup
t€Jm

— 0.

Thus N is continuous.

Step 4. N maps bounded sets in C(J, E) into uniformly bounded sets.

Let B, = {y € C(J,E) : |y| <r} be a bounded set in C(J, E). Then

(5009, [ K,upwpan)
0

t
IN@)Ollm < Mlyo| + MG + M / ds
0

IN

Mlyol + MG + M/O p(s)ly ()l + a(s)v(ly(s)))] ds

t

Mlyo| + MG + M / p(8)3(5)lly ()] + (ly(s))] ds

IN

IA

Mlyo| + MG + M(r +(r)) /0 " p(s)q(s) ds.
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Step 5. N maps bounded sets in C(J, E) into equicontinuous family.
Let 71,72 € Jm, 1 <72 and B, = {y € C(J,E) : |y| < r} be a bounded set
in C(J, E). Thus

IN(y)(r2) = N(y) ()| < [(T(r2)yo — T(71))yol + [(T(72)9(y) — T(71))g9(v)]

/:2 T(r —s)f (s,y(s),/os K(S,U,y(u))du) ds

+

+

/0T2 [T(r, —s) = T(m — s)]f <s,y(s), /OSK(s,u,y(u))du> ds

As 75 — 7 the right-hand side of the above inequality tends to zero.

As a consequence of Step 3, Step 4, Step 5 and (H1) together with the metric
of the Fréchet space C(J, E) we can conclude that N(B,) is relatively compact
in C(J, E).

As a consequence of the Schauder—Tychonoff theorem we can conclude that
N has a fixed point y in §2, which is, by Theorem 1, a mild solution of (1)—(2).

O

4 Second order integrodifferential equations

Definition 2 A continuous solution y(t) of the integral equation

y(t) = C(t)(yo—g(y))+5(t)y1+/oS(t—s)f(s,y(s),/osl((s,u,y(u)) du)ds, te J7

is called a mild solution of (3)—(4) on J.

In order to study the problem (3)—(4) we introduce the following hypotheses:

(H5) A is an infinitesimal generator of a given strongly continuous, bounded
and compact cosine family {C(t) : t € J}.

Now, we are able to state and prove our existence theorem for the problem

(3)-(4).

Theorem 3 Assume that hypotheses (H2)-(H4) and (H5) are satisfied. Then
the problem (3)-(4) has at least one mild solution on J.

Sketch of the proof We transform the problem into a fixed point problem.
Consider the operator N : C(J, E) — C(J, E) defined by

R )0 = 0009+ SO + [ =1 (s,906), [ Koy},
teJ. Let Q:={y € C(J,E) : |y(t)| < a(t), for each ¢t € J} where

att) = 17 (B [ p(s)2(s) ds), qte) = max{1,a(0)}, 3 = sup{C(); t € I},
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and
1() / W s M| + MG
= , €= Mlyo| + MG.
T uty(u)
_ We can also show as in Section 3 that €2 is closed, convex and the operator
N defined on € has values in 2 and it is compact. The existence of the fixed
point, which is a mild solution of (3)-(4), is then a consequence of Theorem 1.
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