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Abstract 

We prove that the distributive resp. modular law holds in congruence 
distributive resp. congruence modular varieties even for tolerance rela­
tions. 
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Let dist(x,y,z) resp. mod(x,y,z) denote the distributive law 

x f\(y Vz) < (x Ay) V(x A z) 

resp. the modular law 

x A(y V(x A z)) < (x A y) V(x A z). 

For an algebra A, the set of tolerances and the lattice of congruences of A will 
be denoted by Tol A and Con A, respectively. We say that dist(tol,tol,tol) holds 
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in A if T A(* V *) C (T A $) V(T A *) is valid for any T, $, * G Tol A, where the 
meet resp. the join is the intersection resp. the transitive closure of the union. 
I.e., denoting the transitive closure by *, $ V ^ = ($ U $)* = ** V <F (the 
second join is from Con A) for any tolerances $ and $ in the present paper 
throughout. The meaning of mod(tol,tol,tol) is analogous. 

Theorem 1 IfV is a congruence distributive resp. congruence modular variety 
then dist(tol,tol,tol) resp. mod (tol,tol,tol) holds in all algebras ofV. 

Proof Suppose V is congruence distributive. Then we have Jonsson terms, cf. 
Jonsson [5], i.e. ternary V-terms t0,..., tn for some even n G IVo = {0,1,2, . . .} 
such that V satisfies the identities t0(x,y,z) = x, tn(x,y,z) = z, ti(x,x,y) = 
ti+1(x,x,y) for i even, h(x,y,y) = ti+1(x,y,y) for i odd, and U(x,y,x) = x for 
all i. Now let A G V, T, $ , * G Tol A and (a, b) G T A( _ V * ) . Then there is an 
even fc and there are elements Co = a, c i , . . . , c^_i, ck = 6 such that (c$, C^+I) G $ 
for i even, (ci,c;+i) G $ for i odd and (a,b) = (c0,ck) G I\ Since 

ti(a,u,b) = ti(ti(a,v,a),u,U(b,v,b)) T ti(ti(a,v,b),u,ti(a,v,b)) = ti(a,v,b), 

for all i and any u, D G A we have 

(U(a,u,b),ti(a,v,b)) G F. (1) 

Now we define a sequence from a to b as follows: 

a = 7jo(a,c0,b) = h(a,c0,b) $ £i(a,ci,b) $ *i(a,c2,6) $ 6i(a,c3,b) 

# . . . $ *i(a,c*_i,&) #*i(a ,Q. ,b) = h(a,b,b) = t2(a,b,b) 

= t2(a,ck,b) $ t2(a,ck~i,b) $ t2(a,ck^2,b) * . . . $ l ,2(a,c0 ,b) 

= t2(a,a,b) = t3(a,a,b) $ 7j3(a,Ci,b) * t3(a,c2,b) $ . . . ^ 

t3(a,ck,b) =t4(a,ck,b) ^ U(a,ck-i,b) $ . . . $ 

rn_i(a,Cfc-i,6) * tn-i(a,ck,b) = tn-1(a,b,b) = tn(a,b,b) = b. 

It follows from (1) that any two consecutive members of this series are in ( r n 
$ ) U ( r n # ) C (FA$)V(m*). Thus (a,b) G ( rAT)V(m*) , whence 
dist(tol,tol,tol) holds in V. 

Now let V be congruence modular. Then we have Day terms, i.e. quaternary 
V-terms m0,mi,... ,mk for some 0 < k G 1V0 such that V satisfies the identities 

m0(x,y,u,v) = x, mk(x,y,u,v) = y 

mi(x, y, x, y) = mi+x(x, y, x, y) for i even, 

mi(x,y,z,z) = mi+i(x,y,z,z) for i odd, and 

mi(x,x,y,y) = x for all i, 

cf. Day [3]. First we show that, for any A G V and T, $, ^ G Tol A, 

r n ( $ o ( r n $ ) o $ ) c ( m $ ) v(r n *). (2) 
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Let (a, b) G T n ($ o ( r n $ ) o $) . Then there are c, d G 1̂ with (a, c), (d, b) G 
$, (c, d) G r n $ and, of course, (a, b) G V. Consider the elements d-h = 
raj (a, b,c,d) for i = 0 , 1 , . . . , k, ei = ra?;(a, b, c, c) = ra^+i (a, b, c, e) for i odd, 
and e-i = ra^a, b, a,b) = mi+i(a, b, a, b) for i even. Then do — a, dk = b, and 
(di,ei),(ei,di+i) G m # for i odd. 

For i even we have (di,a), (e?;,d?+1) G $, 

di = rni(a,b,c,d) = mi(nii(a, b, c, d), rrii(a, b, c, d), a, a) F 

mi(mi(a,a,c,c),mi(b,b,d,d),a,b) = ra?;(a, b, a, b) = e?, 

i.e., (di,ez) G V n $ . Similarly, (e^dj+i) G V n $ . 
Now (a, b) G ( r A f ) V ( r A $ ) follows from transitivity and from the fact 

that all the (di,e-) and (e?:,di+i) belong to (VA$) V ( r A $ ) . This shows (2). 
Now define $ 0 = $ and $ n +i - $n ° (P n \I>) o $ n for n > 1. Notice that all 

the $ n belong to Tol A We claim that, for all n G No, 

r n $ n c (rn$)v(rn$). (3) 

This is evident for n = 0. Assuming (3) for an arbitrary n and applying (2) we 
obtain r n $n+i = r n ($n o (r n $) o $n) c (r n $n) v ( r n * ) c ( m $ ) v 
(r n *) V (P n #) = (r n $) V (r n $), i.e. (3) holds for n + 1. Thus (3) holds 
for all n and we obtain T A($ V(r A *)) = P n \J{$n : n G N 0 } = l j { r H $ n : 
n G N 0 } C ( r n $) V(P n $ ) . This proves Theorem 1. D 

Corollary 1 (Gumm [4]) If V is a congruence modular variety then it satis­
fies Gumm's Shifting Principle, i.e., for any A G V. a, 7 G Con A and $ G Tol A 
«/ (x> 2/)> (w> v) £ a> (x>w)> (?/?v) € $> (w> ̂ ) £ 7 ft^d a n $ C 7 £ften (x, H) G 7. 

Proof (x,y) G cY n ($ V(a A7)) C ( Q A $ ) V(CTA7) C 7 V 7 = 7. • 

Notice that Theorem 1 also implies the Triangular Principle and the Trape­
zoid Principle for congruence distributive varieties, cf. [1] and [2]. 

Now we give an example. Consider the monounary algebra B = ({0,1,2}, —) 
where —0 = 0, —1 = 2 and —2 = 1. Then a with the associated partition 
{{0},{1,2}} is the only nontrivial congruence of B, so ConH is distributive. 
Notice that 

$ = {(0,1),(1,0),(0,2),(2,0),(0,0),(1,1),(2,2)} 

is a tolerance and a f l f <2 (a H $)*. Hence the following statement indicates 
that Theorem 1 cannot be extended for single algebras. 

Proposit ion 1 If mod(tol,tol,tol) or dist(tol,tol,tol) holds in an algebra A then 
m r c ( r n $)* for any T, $ G Tol A. 

Proof Apply mod(r, $, 0) or dist(I\ $, 0). • 
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