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Abstract

We prove that the distributive resp. modular law holds in congruence
distributive resp. congruence modular varieties even for tolerance rela-

tions.
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Let dist(z,y, z) resp. mod(z,y, z) denote the distributive law
zA(yVz) <(zAy)V(zAz)
resp. the modular law
zAyV(zAz)) < (zAy)V(zAz).

For an algebra A, the set of tolerances and the lattice of congruences of A will
be denoted by Tol A and Con A, respectively. We say that dist(tol,tol,tol) holds
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in AfCA(®VT) C (T'ADP) V(LA WP) is valid for any I, ®, ¥ € Tol A, where the
meet resp. the join is the intersection resp. the transitive closure of the union.
Le., denoting the transitive closure by *, V¥ = (& U ¥)* = ¥*V &* (the
second join is from Con A) for any tolerances ® and U in the present paper
throughout. The meaning of mod(tol,tol,tol) is analogous.

Theorem 1 IfV is a congruence distributive resp. congruence modular variety
then dist(tol,tol,tol) resp. mod(tol,tol,tol) holds in all algebras of V.

Proof Suppose V is congruence distributive. Then we have Jénsson terms, cf.
Jénsson [5], i.e. ternary V-terms to, ..., for some even n € No = {0,1,2,...}
such that V satisfies the identities to(z,y,2) = z, ta(z,y,2) = 2z, ti(z,z,y) =
tiv1(z,z,y) for i even, t;(x,y,y) = tiy1(z,y,y) for i odd, and t;(z,y,z) = z for
all i. Nowlet A€ V,I',®,¥ € Tol A and (a,b) € TA(®V ¥). Then there is an
even k and there are elements ¢y = a, ¢y, ..., ck—1,ck = bsuch that (¢;,c;41) € ®
for 7 even, (c;,ci41) € ¥ for i odd and (a,b) = (co,cx) € T'. Since

ti(a,u,b) = t;(t:i(a,v,a),u,t;(b,v,b)) T t;(t:(a,v,b),u,ti(a,v,b)) = ti(a,v,b),
for all ¢ and any u,v € A we have
(ti(a,u,b),ti(a,v,b)) € T (1)
Now we define a sequence from a to b as follows:

a = to(a,co,b) = ti(a,co,b) ® ti1(a,c1,b) ¥ t1(a,c2,b) @ t1(a,cs,b)
U ... ®t(a,cp—1,b) ¥ ti(a,ck,b) = t1(a,b,b) = t2(a,b,b)
= ta(a,ck,b) ¥ ta(a,ck—1,b) ® ta(a,cr—2,b) ¥ ... ® ta(a,co,b)
= ty(a,a,b) = t3(a,a,b) ® tz(a,c1,b) ¥ ts(a,co,b) & ... U
ts(a,ck,b) = ta(a,ck,b) ¥ ts(a,cp—1,0) ® ... @
tn—1(a,cr—1,0) ¥ tn_1(a,ck,b) = ty_1(a,b,b) = ty(a,b,b) =b.

It follows from (1) that any two consecutive members of this series are in (I'N
YU (CN¥) C (I'A®)V(CN¥). Thus (a,b) € (TA®) V(T N ¥), whence
dist(tol,tol,tol) holds in V.

Now let V be congruence modular. Then we have Day terms, i.e. quaternary
V-terms mq,m1,. .., my for some 0 < k € Ny such that V satisfies the identities

mo(%y)%v) =z, mk(m,y,u,v) =y
mi(%%%ll) = Mit1 ('Tvy:x)y) for 4 even,
mi(z,y,2,2) = miy1(z,y, 2, z) for i odd, and

mi(z,z,y,y) = z for all 7,
cf. Day [3]. First we show that, for any A € V and I, ®, ¥ € Tol 4,

[N (®o(INT)o®) C(TNG)V(TNT). @)
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Let (a,b) e TN (® o (I'N¥) o ®). Then there are ¢,d € A with (a,c), (d,b) €
®, (c,d) € I'N¥ and, of course, (a,b) € I'. Consider the elements d; =
mi(a,b,c,d) for i = 0,1,...,k, e; = m;(a,b,e,c) = myyi(a,b,c,c) for i odd,
and e; = m;(a,b,a,b) = mit1(a,b,a,b) for i even. Then dy = a, dj, = b, and
(d.,‘,,(ii), (ei,diﬂ) e I'N Y for i odd.

For i even we have (d;, e;), (ei,d;y1) € @,

d; = mi(a,b,c,d) = mi(mi(a,b,c,d),m;(a,b,c,d),a,a) T

mi(mi(a,a,c,c),mi(b,b,d,d),a,b) = m;(a,b,a,b) = e;,

ie., (di,e;) € T'N®. Similarly, (e;,d;y1) € TN P.
Now (a,b) € (I'A®)V(I'A¥) follows from transitivity and from the fact
that all the (d;, e;) and (e;, di+1) belong to (I'A®) V(I' A ¥). This shows (2).
Now define &y = ® and ®,,41 = ¢, 0 (I'N¥) o P, for n > 1. Notice that all
the ®, belong to Tol A. We claim that, for all n € Ny,

'ne, c(Cna)v(rno). (3)

This is evident for n = 0. Assuming (3) for an arbitrary n and applying (2) we
obtain TN @y =TN(@po(TNP)0d,) C(I'N®,)VINT)C TNV
CNne)v(In¥) =(TNe)Vv(CNT), ie. (3) holds for n+ 1. Thus (3) holds
for all n and we obtain TA(RV(ITAT)) =T NU{®,:n€ No} =U{LND, :
n € No} C (I'n®)Vv(I'N ¥). This proves Theorem 1. ]

Corollary 1 (Gumm [4]) IfV is a congruence modular variety then it satis-
fies Gumm’s Shifting Principle, i.e., for any A € V, a,y € Con A and ® € Tol A
if (z,), (u,v) € a, (z,u),(y,v) € ®, (u,v) €y and aN® C v then (z,y) € v.

Proof (z,y) € anN(®V(aA7y)) C (aA®)V(iaAy) CyVy=1. O

Notice that Theorem 1 also implies the Triangular Principle and the Trape-
zoid Principle for congruence distributive varieties, cf. [1] and [2].

Now we give an example. Consider the monounary algebra B = ({0, 1,2}, —)
where —0 = 0, —1 = 2 and —2 = 1. Then a with the associated partition
{{0},{1,2}} is the only nontrivial congruence of B, so Con B is distributive.
Notice that

¢ = {(0,1),(1,0),(0,2),(2,0),(0,0),(1,1),(2,2)}

is a tolerance and a N ®* Z (a N ®)*. Hence the following statement indicates
that Theorem 1 cannot be extended for single algebras.

Proposition 1 If mod(tol,tol,tol) or dist(tol,tol,tol) holds in an algebra A then
rne* C (I'Nn®)* for any I',® € Tol A.

Proof Apply mod(T, ®,0) or dist(T', ®,0). 0O
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