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Abstract 

The set of elements of a Heyting algebra (the algebraic counterpart 
of intuitionistic logic) which are closed under double negation forms a 
Boolean algebra. We present similar results for BL-algebras, the algebraic 
couterpart of the logic of continuous t-norms. 
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1 BL-algebras 

Each continuous t-norm ® (i.e. an isotone associative commutative operation 
on [0,1] with 1 as the neutral element) is "composed" of three basic ones (for 
details see [8]): Lukasiewicz (a eg) b = max(0, a 4- b — 1)), minimum (also called 
Godel t-norm; a<g>b = min(a, 6)), and product (a <g> b = ab). 

The interest in many-valued calculi with conjunction defined by a t-norm 
(and implication by the corresponding residuum —• where a —> b = max{c | a ® 
c < b}) has a long tradition (see [7], [4], and [5] for Lukasiewicz, Godel, and prod­
uct logics, respectively, and [6] for completeness, further results, and historical 
information). Recently, there has been a strong interest in t-norm based logics in 
the context of investigations in fuzzy logic, i.e. "logic of graded truth" . The three 
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above mentioned logics have a common generalization—they are axiomatic ex­
tensions of so-called basic logic. Basic logic is a syntactico-semantically complete 
calculus; semantics is defined in the usual manner using so-called BL-algebras 
("BL" stands for "basic logic") that play the role of structures of truth values [6]. 
A BL-algebra is a residuated lattice [2, 6] (i.e. an algebra L = (L, A, V, 0 , —>, 0,1) 
such that (L, A, V, 0,1) is a bounded lattice, (L, 0 ,1) is a commutative monoid, 
and x<&y<zi&x<y —> z (adjointness condition)) satisfying prelinearity 
((x —•> y) V (y —> x) = 1) and divisibility (x A y = x 0 (x —> y)\ equivalently: for 
every x < y there is z such that x = y 0 z). 

The class BC of all BL-algebras is a variety of algebras (i.e. an equationally 
defined class). For a continuous t-norm 0 , the algebra [0,1]® = {[0,1], min, max, 
0,—>,0,1} (—> is the residuum corresponding to 0 ) is a BL-algebra, so-called 
t-norm algebra corresponding to 0 . BC is the variety generated by all t-norm 
algebras corresponding to continuous t-norms (i.e. BC is the smallest variety 
containing {[0,1]® | 0 is a continuous t-norm }), see [1]. Another example of 
a BL-algebra is the Lindenbaum algebra of propositional basic logic (i.e. the 
algebra of provably equivalent formulas), see [6]. There are three special BL-
algebras corresponding to the basic t-norms (we abbreviate x —> 0 by ->£; all of 
the following statements are reformulation of results from [6]): MV-algebras, i.e. 
BL-algebras satisfying -i-»x = x (the variety MV of MV-algebras is generated 
by the Lukasiewicz t-norm algebra; there are other definitions [6]), G-algebras, 
i.e. BL-algebras satisfying x 0 x = x (the variety Q of G-algebras is generated by 
the t-norm algebra that corresponds to Godel t-norm; G-algebras are Heyting 
algebras satisfying prelinearity), and 11-algebras, i.e. BL-algebras satisfying x A 
-ix = 0 and -.-us < ((x 0 z —> y 0 z) —> (x —> y)) (the variety V of Il-algebras 
is generated by the t-norm algebra that corresponds to the product t-norm). 
Along this line, a Boolean algebra is a BL-algebra L which is both an MV-
algebra and a G-algebra. Note that the correspondence to the usual definition 
(i.e. a Boolean algebra as a complemented distributive lattice) is the following 
one: if L is a BL-algebra which is both an MV-algebra and a G-algebra then 
putting x! = x —> 0, (L ,A,V/ ,0 ,1 ) is a complemented distributive lattice; 
conversely, if (L, A, V/ , 0,1) is a complemented distributive lattice then putting 
x - 4 H = x /VH , L = (L, A, V, A, —>,0,1) is a BL-algebra which is both an 
MV-algebra and a G-algebra. 

2 Boolean parts 

For a BL-algebra L, denote 

D(L) = {a e L | a = -""•a}, 

the set of all elements satisfying the law of double negation, and 

H(L) = {a e L | a = a<g>a}, 

the set of all elements idempotent w.r.t. conjunction. 



Boolean part of BL-algebras 

A well-known result, essentially due to Glivenko [3], says that if L is a 
Heyting algebra then D(L) is a Boolean algebra where the meet is inherited 
from L and the supremum of a and 6 in D(L) is -»->(a V 6). 

Lemma 1 If L is a BL-algebra then H(L) is the largest subalgebra ofL that is 
a G-algebra. 

Proof First, 0,1 G H(L). Now, observe that if a € H(L) then a ® b = a A b for 
any b G L. Indeed, a A b = a ® (a —> b) = a ® a ® (a -> b) = a ® (a A b) < a ® b; 
a ® b < a A b follows from the isotony of ®. We prove that H(L) is a subalgebra. 
Take any a,b e H(L). Since ® is distributive over A [6, proof of Lemma 2.3.10], 
we have (aAb)®(aAb) = (a®a)A(a®b)A(b®b) = aAb, i.e. H(L) is closed under 
A. Furthermore, (aVb)®(aVb) = (a®a)V(a®b)V(b®b) = aV(aAb)Vb = aVb, 
i.e. H(L) is closed under V. Finally, (a ® b) ® (a ® b) = (a ® a) ® (b ® b) = a ® b, 
proving closedness under ®. We prove that H(L) is closed under —>: Each 
BL-algebra is a subdirect product of linearly ordered BL-algebras [6, Lemma 
2.3.16]. We may therefore safely assume that L is linearly ordered. If a < 6 then 
a —> 6 = 1 G H(L). Let a > b. We show that a —> b = b. Since b < a —> b is 
always true, it suffices to show that b < a —> b is impossible. Let then b < a —> b. 
Since a G H(L), we have a A (a —> b) = a ® (a —> b) < b. By linearity of L, 
a A (a —> b) = min(a, a —> b) > b, a contradiction. 

If H' 2 H (I-) is another subalgebra of L that is a G-algebra then for any 
a G H', a<S>a = a, i.e. a G H(L), thus H' = H(L). This proves that H(L) is 
the largest subalgebra that is a G-algebra. • 

Lemma 2 If L is a BL-algebra then D(L) is the largest subalgebra OfL that is 
an MV-algebra. 

Proof First, we show that D(L) is a subalgebra of L. Since ->x = -i-i-i£ is 
valid in L, D(L) = {-ia \ a G L}. Clearly, 0,1 G £>(L). Since (a -> 0) A (6 -> 
0) = (a V 6) —> 0 (easy to prove by adjointness), D(L) is closed w.r.t. A. To 
see that D(L) is closed w.r.t. V, we verify (a —> 0) V (b —> 0) = (a A b) —> 0: 
The "<" part follows by antitony of negation. Conversely, (a A b) —> 0 = 
((a A 6) -+ 0) ® ((a -> 6) V (6 -> a)) = ((a -> b) ® ((a A 6 ) - > 0)) V ((6 -> 
a) ® ((a A b) -> 0)) < (a -> 0) V (b -> 0). x ® (x -> H) < H yields -na -> 
-,6 = -i(-.a 0 6) (indeed, applying adjointness to b ® (-ia ® (~ia —> -•&)) < 0 and 
to (-ia ® 6) ® ((-.a ® b) -> 0) < 0 gives the "<" and ">" inequalities). Now, 
introduce a binary operation © on D(L) by a 0 b = —-—.(a ® b). We show that 
(D(L), 0 ,1 ) is a commutative monoid: Clearly, a 0 b G D(L). Furthermore, 0 is 
obviously commutative and since ->-i(->a® 1) = ->a, 1 is its neutral element. To 
verify associativity, we reason as follows: ->-i(-i-»(a® b) ®c) < -i-i(a®->-i(6®c)) 
iff-.(a®-i-i(b®c)) < ^(^-n(a®b)®c) iff-i-i(a®b)®c®-i(a®-i-i(b®c)) < 0 iff 
c®- . (a®- .^(6®c)) < -«-i-i(a®b) = -.(a®b) iff a®b®c®--(a®-i - i (b®c)) < 0 
which follows from b ® c < —1—»(6 ® c). We proved (a 0 6) 0 c < a 0 (6 0 c), 
the converse inequality is symmetric. Therefore, (D(L), 0 ,1 ) is a commutative 
monoid. Furthermore, as -ia —> -i6 = -.(->a ® 6), D(L) is closed under —>. We 
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now verify that 0 and —• satisfy adjointness: Since a 0 b < —i—i(a 0 b), a 0 b < c 
implies a < b —> c by adjointness of 0 and —>. If a < b —> c then a 0 b < c, and 
so a 0 b = -i-i(a 0 6) < -»-ic = c. Now, we have a 0 b < a 0 b iff a < b - * (a 0 b) 
iff a 0 6 < a 0 b, i.e. a®b<a($h. In a similar way one obtains aOb < a®b, 
thus a 0 b = a 0 b for any a,6G Z)(L). Therefore, D(L) is a subalgebra of L. 
Obviously, D(L) satisfies x = -.-.as and so -D(L) is an MV-algebra. It is the 
largest MV-algebra contained in L as a subalgebra since otherwise there is an 
a G L — -D(L) such that a = -»-»a, a contradiction to the definition of -D(L). 

• 

Remark Note that in a different way, the fact that D(L) is an MV-algebra is 
obtained in [9]. 

Theorem 3 (1) I/L is an MV-algebra then D(L) = L and H(L) is the largest 
subalgebra of L that is a Boolean algebra. 

(2) If L is a G-algebra then H(L) = L and D(L) is the largest subalgebra of 
L that is a Boolean algebra. 

(3) I/L is a H-algebra then D(L) = H(L) is the largest subalgebra of L that 
is a Boolean algebra. 

Proof (1): If L is an MV-algebra then obviously D(L) = L. The second part 
follows directly from Lemma 1. 

(2): Analogously, L is a G-algebra yields H(L) = L and the assertion follows 
from Lemma 2. 

(3): As mentioned above, each BL-algebra L is a subdirect product of linearly 
ordered BL-algebras [6, Lemma 2.3.16]. Moreover, as it follows from the proof, 
the linearly ordered factors satisfy all identities of L. Therefore, every II-algebra 
is a subdirect product of linearly ordered II-algebras. Let Li be the linearly 
ordered factors of L. We identify each a G L with the corresponding element 
(. . . , Oi,,..) of the direct product of Lj's. 

Let L be a II-algebra. First, we show that a = (. . . , o$,...) G H(L) iff a* = 0 
or ai = 1 for all i. The right-to-left part is evident. Conversely, let a G H(L) 
and 0 < Oi. Since Li is linearly ordered, -iO; = 0 (see [6, Lemma 4.1.7]), thus 
-i-iOi = 1. Therefore, putting x = 1, y = a*, and z = a*, -1-.2 < ((x 0 z) —> 
(y 0 z)) —> (x —> y) yields 1 < (a* —> a*) —> (1 —> a*), thus a^ = 1. Therefore, 
for each i, either a^ = 0 or â  = 1. 

Second, we verify that a = (. . . , a*,...) G -D(L) iff â  = 0 or a* = 1 for all i. 
Again, the right-to-left part is evident. Conversely, since Li is linearly ordered 
and Oi A -10̂  = 0, 0 < a^ implies -10̂  = 0. It folows that 0 < â  and â  G -D(Li) 
imply â  = - i ^ = 1. Therefore, H(L) = £>(L), and the claim directly follows 
by Lemma 1 and Lemma 2. • 

Remark (1) Note that (1) of Theorem 3 can also be proved by the subdirect 
representation method: o = ( . . . ,a$, . . . ) e H(L) implies a* G H(L^), i.e. â  0 
ai = ai. We claim that Oi = 0 or a* = 1. By contradiction, let 0 < o^ < 1. Since 
Li is linearly ordered, 0 < â  0 a* yields -10^ < â  (a* < -*ai gives â  0 -»Oi = 0). 
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As x V y = (x —• y) —• y and x —* ->y = ->(# (8> y), we conclude a = a V -ia = 
(a —* -»a) —> ->a = -»(a eg) a) —> ->a = ->a —•> -»a = 1, a contradiction to a < 1. 
The rest is clear. In a similar way, one can prove (2) of Theorem 3. 

(2) A direct consequence of (2) of Theorem 3 is that if a Hey ting algebra 
L satisfies (x —•> y) V (y —» x) = 1 then the join in the Boolean algebra D(L) 

coincides with the join in L. 

We therefore have the following theorem. 

Corollary 4 If L is a BL-algebra then D(L) D H(L) is the largest subalgebra 

of L which is a Boolean algebra. 
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