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Certain Embedding of the Burnside ring into its 
Ghost ring 

K. K. NWABUEZE 

Abstract. 

1991 Mathematics Subject Classification: 16A99 

1 Introduction 

Let G be a finite group. Consider 1Y, a set of subgroups of G which is closed 
with respect to intersection and jonjugation and such that G G U. We define a 
(G, U)-sei as a finite left G-set 5 with, Gs =• {g G G \gs = s} G U, for all s in 
5. Our condition on U imply that for any U G U the set, G/U = {gU \g £ G}, 
of left cosets of U in G is a (G, U)-set, the G-action on G/U is defined by left 
multiplication, G x G/U -» G/U : (b, gU) —> ghU, and that for any two G-sets, 
5i and 52 , the G-sets 5i x 5 2 and 5i U 5 2 are (G, U)-sets. We observe that 
the isomorphism classes of (G, c^-sets form a commutative halfring ^ + ( G , U), 
because one has the obvious natural isomorphisms; 

Si U 52 S 52 U 5i 

( 5 i U 5 2 ) U 5 3 = 5 i U ( 5 2 U 5 3 ) 

5i x 5 2 = 52 x 5i 

(5i x 52) x 5 3 = 5i x (52 x 53) 

Si x ( 5 2 U 5 3 ) = (5i x 5 2 ) U ( 5 i x 5 3 ) . 

Furthermore 1 G -1+(G, W) exists, namely G/G. 
Thus a map from the set 0 + ( G , £/) of isomorphism classes of (G, £/)-sets into a 

ring R which commutes with sums and products and sends 1 G Q+(G, ZY) onto 1#, 
is nothing else than a homomorphism from the halfring Q+(G, U) into R and this 
factors uniquely through the universal ring associated to Q+(G, U), the Burnside 
rings Q(G, U) of G with respect to U. We note that if we assume U to be the 
set S(G) of all subgroups of G, then Q(G, U) coincides with the usual Burnside 
ring fl(G) of G, constructed from the halfring Q+(G) of isomorphism classes of all 
finite G-sets. 

The following facts are more or less obvious(see [1]): 
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T h e o r e m 1.1. 

1. 0(G, U) is generated freely as an additive group by the isomorphism classes 
of transitive (G, U)-sets, i. e. of G-sets of the form G/U with U E U: so its 
rank equals the number k = ku of G-conjugacy classes of subgroups in U. 

2. For any subgroup V < G of G, whether in U or not, the mapping, 

Xv : S^#{seS\V<Gs} 

which associates with any (G, U)-set S the number of elements in, 

Sv :={seS\V<Gs}, 

the set of V-invariant elements in S, induces a homomorphism — also de
noted by xv or, more precisely Xy — from fi(G, U) into Z. 

8. Any homomorphism from £l(G, U) into Z takes the form as in (2). 

4-. For V, W < G one has, Xy = X?w lf anc^ on^V lf> V :~ ^v<ueuU, is 
conjugate to, W := (^w<ueuU. So, in view of V £ U for all V £ S(G) 
and V EU if and only ifV = V, one has k — ku different homomorphisms 
from Ct(G, U) into Z which — after choosing a system, U' — {U\, Ui, 
• • -, Uk}, of representatives of conjugacy classes of subgroups of U with, 
\Ui\ > \U2\ > • • • > \Uk\, — may be denoted by, Xi = Xuu X2 = Xu2> • • •> 
Xk = Xuk • 

Definition and Theorem 1.2. The product map, 

k k 

X~Цx, • ЩG,U)^ЦZ, 
i-l i-\ 

of k different homomorphisms from 0(G, U) into Z is injective and maps 0(G, U) 

onto a subring of finite index, Y\i=i{^a(Ui) : U%) of\\i_l Z, — this way identify

ing Y\i-\ % w%th tne integral closure Cl(G, U) OfO(G. U) in its total guotient ring, 

Q(G, U) = Q®z 0(G, U) = Ylizzi Q- The product Y\i=1 Z is called the Ghost ring 
ofG(see[l]). 

We note from above that for, 0(G, U) = 0(G), and for every subgroup U of G 
there exists a canonical homomorphism, xu(X) := #XU, of its subset, Xu = {x £ 
X | ux = x for all u E U}, of U invariant elements, — in particular, Xi(^0 = ifcX 
if 1 = { 1 G } 3 denotes the trivial subgroup of G. 

c c 
One also has that, xu = Xv, if and only if, U ~ V) for U, V < G, where U ~ V 

denotes that U and V are G-conjugate and, xu(X) = xu(X') for all U < G, if 
and only if, X = X' for X, X' £ -1(G). So identifying each X E 0(G) with the 
associated map, U —> xu(X)y from the set S(G) of all subgroups of G into zT, also 
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denoted by X, we can consider 0(G) in a canonical way as a subring of the Ghost 
ring, 0(G) = Ylu<G^, °f G, consisting of all maps from S(G) into Z which are 
constant on each conjugacy class of subgroups. 

Now consider the isomorphism classes of the transitive G-sets of the form, 

G/U := {gU \ g G G}. These isomorphism classes form a Z basis of 0(G) and for 

c7, V < G, we have, G/U S G/V, if and only if, U - V. 
This then implies that every X G 0(G), can be expressed uniquely in the form, 

X= Y^'ЏU(X)-G/U, 
U<G 

where nyjT, " indicates that the sum extends over just one subgroup out of every 
G-conjugacy class of subgroups. That is, every X G 0(G) can be expressed as 
a linear combination of the isomorphism classes of transitive G-sets of type G/U 
with uniquely determined integral coefficients /iLr(K) G Z, subject to the relation, 

/iu(X)=/iV(X) ifuZv. 
Now recall that for UyV <G one has, xv (G/U) ^ 0 if and only if V <G U 

(that is U is subconjugate to V in G) in which case one has, Xv(G/U) = #{gU G 
G/U | VgU =gU}=]±n-#{geG\VgU=gU} = ]}r]>#{geG\V< gUg~1} = 

(NG(U) : U) • #{U ' < G\V < U' <£ (7}, where, as usual, NG(U) denotes the 
normalizer of U in G. We also note that given any X G 0(G), a subgroup U < G 
is a maximal subgroup relative to " ^ " with Hu(X) ^ 0 if and only if it is a 
maximal subgroup with Xu(X) ^ 0 because if U < G is maximal with fiv(X) ^ 0 
then, xu(X) = Y!U<VCGwix)Xu(G/V) = Vu(X)xu(G/U). By assumption 
Hu(X) y£ 0 and we know that Xu(G/U) ?- 0. Therefore xu(X) / 0. In addition, 
for any U' G S(G) with U < U', but U ^ U'} we have Xu'(X) = 0 because 
Hv(X) • XU'(G/V) = 0 for all V < G in view of the fact that XU'(G/U) £ 0 
implies U' < V and therefore f*v(X) = 0. The converse is proved by reversing the 
argument. 

Note that in the foregone case one has: Xu(X) = V>u(X) • Xu(G/U) = Hu(X) -
(NQ(U) : U). Because, as observed earlier, every X G 0(G) can be expressed 
uniquely in the form 

x= J2'eu(x)-(G/U), 
U<G 

it follows that in the case where G is a p-group one has 

Xi(X) = "£ MX) -(G:U) =pa(X) = XG(X)(P). 
U<G 

Hence, if V is a p-subgroup of an arbitrary finite group G and if U is a subgroup 
of G with an index (G : U) which is prime to p, then: Xv(G/U) = xi(G/U) = 
(G : U) ^ 0(p), and therefore V -<Q U. In particular, it is clear that, if Sylow 
p-subgroups exist in G, they all must be conjugate in G and every p-subgroup 
must be subconjugate in G to each of them. 
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Theorem 1.3 (Thevenaz and Kratzer). Let G be a finite group and consider 
a subgroup U of G and an integer n. Let Xn,u G &(G), defined by: 

I 0 otherwise. 

Then Xn,u E 0(G) if and only if (NQ(U) : U) • no(U) divides n, where n0(U) 
denotes the product of all primes p which divide the order (U : [[/, U]) of the 
commutator factor group U/\U) U] of U < G (see [2]). 

The foregone are basic reviews of some well known facts about the Burnside 
rings. The purpose of this paper is to use all these facts and of course some results 
in group theory, to give a simple condition under which an element of the Ghost 
ring is contained in the Burnside ring for noncyclic p-groups (p ^- 2). So we shall 
be interested in considering the case where G is a p-group (p ?- 2) of order pa, say. 
More precisely ve shall prove the following: 

Main Theorem, (see section 3); Let G be a noncyclic p-Group (p ^ 2) of order 
pa. We consider 0(G) := f t Z := ZS(GV~, and define (for 2 < /3 < a) 

Xß XG
ß Є ЩG) := Д 'Z 

U<G 

Ьy 
( pa-? if\U\<pP, 

Xp := < pa & if\U\ = p^ and U is noncyclic, (1) 
I 0 otherwise. 

We claim that X/3 is contained in 0 (G) . 

2 Some basic results 

Theorem 2.1(Frobenius). The number of solutions of xr = c where c belongs 
to a fixed class Cofh elements conjugate in a finite group G of order n, is divisible 
by the greatest common divisor of hn and r. 

PROOF: See any book on group theory. D 

Proposit ion 2.2. Let G be a p-group, (p / 2). Let xp = 1, xp -y-. 1, yp = 1 and 
[x, y] G C(G), where C(G) denotes the commutators of G, then, 

(*,yi)" = [*,y]E^pyip*p = [*, yip]^ • yipx" = x^; i = 0, 1, . . . , p- 1. 

Moreover, 

(xtf) = (xy>) <*i = j , for i, j € {0, 1, . . . , p - 1} & (x?) # (y). 
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PROOF: easy. • 

Corollary 2.3. In a noncycUc group G, of order p2 there are two different sub
groups of order p. 

PROOF: easy. • 

Theorem 2.4(Kulakoff). In a noncyclic p-group of order pn, p ^ 2 the number 
of solutions of xp — e (the neutral element) is divisible by p m + 1 where (0 < m < 
n). 

P R OO F : See any book on group theory. • 

Lemma 2.5. If g £ G, and U < G then (gU) is cyclic and \(gU)\ = p@ (p a 
prime) if and only if \(g)\ = p^ and U C (g). 

PROOF: easy. • 

Lemma 2.6. Let G be a noncyclic p-group, p •=/=• 2. If G is noncyclic then, 

# { * G G | ^ = l} = 0(p2). 

PROOF: easy. • 

Theorem 2.7. Let G be a noncyclic p-group (p -̂  2) and U<G, \U\ —p. Then 
there exists a normal subgroup V<G ofG of order p2, containing U and isomorphic 
10 Zjp X Zjp . 

PROOF: \iG is abelian, then G = Cpnx x Cpn2 x . . . x Cpnk<Zp x Zp, k > 1, where 
Cpnt denotes the cyclic subgroup of order pn%. 

If Z(G) is abelian and noncyclic then we are home. So we assume from now 
on that, 

l^Z(G) = (g), gPa = l^h0, hp
0 = l^hQ. 

Consider, {x E G \ xp = 1} D {1, bo, . . . , bo~ }. We claim that there exists x £ G 
with xp = 1, but x £ {1, bo, bo, • •., bo_1} = ( M -
Proof of claim: We proceed by induction on |G|, and take that all proper subgroups 
are cyclic. Consider $(G), the Frattini subgroup of G. One knows that G/$(G) = 
ZL3 with e the minimal number of generators og G > 1. 

If e > 3, pick gi, g2, . . . , ge £ G such that ljl) ~g2) . . . , lje £ G/$(G) generate 
G/$(G). Then (gX) . . . , ge) = G and (gu g2) < G, (gi, g2) ^ G is noncyclic. This 
implies that (ai, g2) contains more than p elements of order p or 1. More precisely, 
there would be noncyclic proper subgroups. Here again we are home. 

If e = 2, G = (gi, g2) where g\ = #0 ^ g2 = g~l. Define a map 

GxG-*$(G) : fo, fc)-> for, ft]. 
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If {x G G | xp = 1} = (bo), then there exists some power b0 with [</i, #2] = b0 7-= 1 
(because G is not abelian). Hence without loss of generality, 

[01. £2] = bo, l>i. 02] = fto, #1.72 = M2flfi-

(gig2F = b0
+2+3+-+p^ •*? = 1 =» (gi</2)

p = 1. 

But (g\g2) € 3>(G) hence x = gig2 is of order p, but not in (bo). 
Now consider all x £ G with a?p = 1, but x $. {1, bo, . . . , bp~ } = (^0). 

Obviously (x, bo) = Zp x Zp . It follows that the order of existing subgroups is 
equal to 

#{x£G\x"=l,xi{l,h0, . . . , / i r 1 } } = #{x€G\xr = l)-p 
P2 — p p2 — p 

So our claim now follows from (2.6) because if, 

# { * E G | ^ = l} = p^.<?, 

wi th /?> 2, (p, q) = 1, then 

# { x E G [ x p = l } - p _ p a g - p _ p * " 1 ? - 1 
p2 — p p2 — p p — 1 

is prime to p. Hence under conjugation of G on 

{ V C G I & o e V S Z p X Z p } , 

there must be an invariant one. D 

T h e o r e m 2.8. Lel G be a fimte cycUc group of order n. Then we have: 

1. for each divisor d of n there is precisely one subgroup of order d. 

2. given d\, d2 that divide n then the following are equivalent: 

(a) d\ divides d2. 

(b) IfU(d\) is the subgroup of order d\ and U(d2) is the subgroup of order 
d2 then U(d\) C U(d2). 

3. if n — pa we have for any two subgroups U\} U2 < G ; U\ C U2 <& \U\\ < 
\U2\-

I ifU<G, U cyclic, U0 < U -> U0<G. 

P R O O F : easy. Q 



Certain Embedding of the Burnside ring into its Ghost ring 107 

3 Characterizations 

Here we now solve our ma in problem . Before this we need 

L e m m a 3 . 1 , Let G be a p-group and define yp := t/? £ Q(G) by 

% ( m . f P « - " H\U\<PB, m 

y^U>-\ 0 otherwise {Z> 

where p a = \G\. then yp € Q(G). 

P R O O F : We check by congruences; assume U<V < G. It suffices to show tha t 

J2 yp((vU))=0(V :U). 
vuev/u 

Note tha t (V : U) is a power of p, say p s . Now 

£ yA(vU)):=Pa-0if:{vU€V/U\\(vU)\<^} (3) 
vUev/u 

and 
C(v, U) := #{vU e V/U | \(vU)\ <p?} = 0 

unless 
pi~\U\</, 

that is 7 < /?. In this case for any t £ 7 w e have, 

\(vU)\ = ((vU) : U)\U\ < p0 & ((vU) : U) < / ~ 7 & (vU)^"-^ = U, 

in V/U. Hence, by (2.1), the left hand side of equation (2) is divisible by 

pa-Pg cd-[(V :U), pP-*] = gc- d[pa~0(V : U), p a ^ } . 

Since p 0 1 ' 1 := (G : U), this must be divisible by (V : U). So all congruences we 
need to conclude tha t y@ is in Q(G) are satisfied. D 

Theorem 3.2(Main Result) . Let G be a noncyclic p-group (p ^ 2) of order pa. 
We consider Q(G) := f l ' Z •= Zs^f~. For 2 < /? < a define 

Xß=XßЄ Ù(G) := [ 'Z 
U<G 

( p«-e if\U\<vP, 
X(3 = { Pa ^ if\U\ = pP and U is noncyclic, (4) 

( 0 otherwise. 

Then xp 25 contained in fi(G). 
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PROOF: We first observe from (3.2) that the element xp is in Q,(G) if and only if 

is in 0(G), where, 

Pß :== Pß := Уß - Xß 

n (m ._ / P""' * \U\ = p", cyclic and p«~f> = (G : U)t _ 
P0{U)'-\o otherwise. ( 5 ) 

For W<V < G we have 

G(JX/\ _ / ( ^ : IV) if KV is cyclic of order p^, 
M ^ I : - j o otherwise 

= f (G : PV)(V : KV) if KV is cyclic of order p " , = , v 

'" \ 0 otherwise ^ ' 'PP ^ *' 

Hence, the restriction of V in G, res \,y (p^) is in Q(V) for V < G, V ?- G in view 
of the following simple analysis; that is from an observation that from (1.6), that 
for every U < G (G a p-group) the element tjj G Q(G) defined by 

eu.= lp(G:U) i f V ~ t / , 
e t / • \ 0 if V + U l ° j 

is always in Q(G). Hence, 

P - P ? : = I] e"> 
cj cyclic, |C/|=p0 

is also in Q(G) for every p-group G, cyclic or noncyclic To show that pp £ -1(G), 
we have to prove that 

Pp(V,U):= J2 Pp((vU))=0(V :U) 
vU£V/U 

holds for all U<V < G. Obviously, 

YJ Pp((vU)) =Pa~P '#{vU £ V/U\(vU) cyclic of order p^} . 
vuev/u 

Hence p/i(V, U) = 0 unless (7 is cyclic of order p7 with 7 < /?. So we assume 
that to be the case from now on. As we have seen above, for V < G, V 7- G the 
restriction map res | y from IQ(G) into Q(V) maps p9 onto an element in Q(V). 
So for V < G, V ^ G the above congruences necessarily hold. 

Hence, without loss of generality, we can assume in addition that V = G, that 
is, we can altogether assume that U is cyclic normal subgroup of G, p 7 < p^ and 
we have to show that pp(G : U) = 0(G : U). 
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If \U\ = 1, we have; 

PP(G, 1) = X > « * » - P*'* • *{9 e G\ \(g)\ = / } • (7) 

g£G 

Now 

#{jg E G | \(g)\ = / } = # { C < G | C is cyclic of order pP] • (pP - pp~l. 

So 

= p " - " • (p^ - / ~ 1 ) # { C < G I C is cyclic of order / } = 

= p * - 1 • (p - 1) • # { C < G | C is cyclic of order p$}. 

Hence we have to show that if G is a noncyclic p-group for some prime p ^- 2 and 
if /?> 2, then 

# { < l € G | |(^)| = p ^ } - 0 ( p ^ ) . 

But according to (2.4), our assumptions imply that 

F(G,pP):=#{g€G\g'' = l} 

is divisible by p ^ + 1 and we have: 

F(G, p8) = F(G, p0'1) + #{</ € G 11(5)| = / } . 

So indeed we have 

#{9 € G11(</)| = p"} = F(G, pP) - F(G, p"- 1 ) = 0(pP). 

Now assume | U | = p 7 > 1. As we have to show that 

pa~p - #{gU e G/U | (gU) is cyclic of order p^} 

is divisible by, 
(G : U)=pa-1 = pa-P -pP-\ 

we are left to prove that p ^ " 7 divides 

#{#{/ G (5/1/ | /£{7) cyclic of order / } . 

This is trivial in case /? = 7. Otherwise observe from (2.5) that #{#[ / G G / ^ I (#(/) 
cyclic of order p^} = # { C < G | C is cyclic of order p?, C 2 U) ' (P^1 - V ~ " W ) 
is divisible by p ^ - 7 if and only if, 

# { C <G\U<C,U^C,C cyclic of order p^} ^ 0(p). 

So it suffices to show that 

z(U, /?) := zG(C7, /5) : = # { C < G | C D U, |C| = pP, C cyclic} = 0(f)-
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Now assume f$ — 1 > 7 and let 

Z{U, /?) := ZG(U, p):={C<G\CD U, \C\ = Z " 1 , C cyclic}, 

then there exists a canonical map, 

0 : ZG(U,f3)-^ZG(U,(S-l), 

defined by, 

<f>(C) = c*. 
Observe that given V € Z(U, 0 - 1) then C 6 <£-1(V) if and only if C G z(U, /?) 
and V < C if and only if C € Z(V, /?) and so 

-(#,/?) = X) *^~l(V) = E *Z{V,P)= £ Z W) 
VGZ(c/,/i-i) vez(u,p~i) vez(u,p-i) 

So we may assume without loss of generality, that 7 = /? — 1. Since for Uo the 
unique subgroup of order p 7 - 1 = |c!"|/p one has 

zG(U,p) = zG/Uo(U/U0,P-1 + l), 

we may as well assume \U\ = p and /? = 2. So to prove our claim it suffices to 
show that zG(Cp, 2) = 0(p). 

Now, for z(Cp, 2), (CP«G), let, 

z0(Cp j 2) := #{zT^G I zT G zT(Cp, 2)}. 

Then zo(Cp, 2) = z(Cp , 2)(p). Since G is noncyclic then there exists by (2.3) a 
further subgroup (71-) = II < G of order p, different from Cp. Let II act on 

Z0(U, 2) := {Z«G I Z is cyclic of order p2, Z D Cp} 

as follows: 
Assume Cp = (a) and pick x E Z £ ZQ(U} 2) with xp = a so that Z = (x). Note 
that a: is determined modulo Cp. Choose 7Tj E n and define, 

7T,- * Z = (lT%x). 

We observe that if x = .c' mod (Cp), then (7rzx) = (7^2'). More precisely, since 
(TT 1 ' ^ = x ' = a = x,p = (TTV) P and, 

U * Z = Z, 

7T1' * (TT-7" * Z) = 7ri+ '̂ * zT, 

7T1' * Z = Z <£• TT* = lK (since n -7- Zp). 

every orbit has exactly p elements, so the proof follows. D 
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