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On the control net of certain multivariate spline 
functions 

H A N S - J Ö R G W E N Z 

A b s t r a c t . For univariate spline functions, control polygons are well-known. This paper 
presents a similar concept for the multivariate setting in case that the spline functions are 
linear combinations of the multivariate normalized B-splines due to Dahmen, Micchelli, 
and Seidel [5]. In addition, we show that the sequence of control nets converges uniformly 
to the function it represents as the underlying triangulation is uniformly refined. 

1991 M a t h e m a t i c s S u b j e c t Class i f icat ion: 41A15, 41A63, 65D07 

1 Introduction and Notations 

It has been a quite old desire of numerical mathemat ic ians to generalize the concept 
of splines and especially of the basis functions called B-splines to the mul t ivar ia te 
sett ing. In 1992, Dahmen , Micchelli, and Seidel [5] presented a mult ivar ia te B-
spline basis with all the desirable propert ies of the univariate one preserved, such 
as afnne invariance, convex hull property, locality, par t i t ion of unity, and posit ivity 
(cf. [5, 10]) while it does not suffer from the regularity (and therefore inflexibility) 
of tensor product B-splines. 

For the rest of the present section we will shortly introduce simplex splines, the 
fathers of the new B-splines, and the new B-splines themselves to the reader . In the 
next section, we define the mul t ivar ia te analogue to univariate control polygons, 
the so-called control ne ts . In Section 3, we will show tha t if we successively refine 
the underlying t r iangula t ion in a uniform way, the respective control nets to a given 
mult ivar ia te spline function converge uniformly to the function they represent . 

Now, first of all we give an exact definition of the t e rm " t r iangula t ion": 

D e f i n i t i o n 1, (cf. [7]) A finite family T of sets T C Ft5, # T = s -f 1, is called a 
triangulation of a set D C Ft5 if 

(i) v o l , [ T ] > 0 , T6T, 

(ii) U T 6 T M = A 

(m) [T]n[T /] = [TnT / ] , T, T' E T , 

with [r] denoting the convex hull of the elements of r G T. 

For the rest of the paper we will assume D to be a compact , simply connected 
subset of IR5, and t ha t n - f l := # T < oo holds. Moreover, we pos tu la te t h a t for D 
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there exists at least one triangulation, otherwise we approximate D by a domain 
for which a triangulation exists. 

If we denote by dM the boundary and by intM the interior of a set M c H s , 
we can give the following 

Definition 2. Let T be a triangulation of D C B5, 0 < volsD < oo, with 

T = {n ={*••„, . . . ,*. .} I i G J c N S + 1 } . 

To every vertex t, of the triangulation we assign knots f^o, • •., t«,/c-i (whereas k 
corresponds to the order of the polynomial spline functions to be represented) in 
the following way: 

ti)0 = . . . = titk-\ = U , if t,- G dD , 
t2- 0 = t, und tiyU G D , tv = 1 , . . . , k — 1 , if tt- € int(D) . 

In addition, with 

Ai,b := [t,-0l6o,..-,«.-.,6.] , i € J , b e { 0 , . . . , k - l } 5 + 1 , 

fli,fc := int I p | A i b , 
\0<|b|<fc-l / 

we require 
vols{Qi}k) > 0 , i G J . (1) 

(For vectors b G { 0 , . . . , k - 1 } 5 + 1 we denote |b | := ||b||i := YlLo \bil) T h e n
5
 t h e 

set 
K(T) := {ti)U\ti is a vertex of T, iv = 0 , . . . , k - 1} 

is called a knot set of order k of the triangulation T. 

Remark. A simple knot set of a triangulation T is obtained by 

*iy0 = . . . = tik — 1 — *i 

for all vertices t, of T. In this case, A^ ^ = [Ti], i G J, 0 < |b | < k, is true which 
implies Q^ k = [rj], i G J, and because of Definition 1 (i), equation (1) holds. 

Over such a knot set we define the simplex spline via 

Definition 3. (cf [1, 8]) The s-variate simplex spline M(x|PV) of order k over the 
knot set W = {wo,... ,ws+k-i} C Fts is the particular continuous, nonnegative 
function which satisfies 

/ f(x)M(x|KV)dx = 
JIRS 

(k - 1)! / f{<t>QWo + h (j)s+k-\ws+k-i) d<l>o • • • d(j)s+k-i (2) 
JS8+k-i 
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for all / e L1

1

o c(R5), the space of all locally Lebesgue integrable functions on Rs 

Here, 

S + / C - 1 

Ss+k-\ = { ( ^ o . - " , ^ + * - i ) I &> > 0, i/ = 0, . . . ,s + fc- 1, ] T 0„ = 1} 
i/=0 

is the standard (s + fc - 1) simplex. In case vol,(VV) = 0, the simplex spline is to 
be understood in the distributional sense. (In this paper, all knot sets W satisfy 
vol5(VV) > 0 because of (1)). 

t i ь i Ч . 2 

Fig. 1. a i ( 3 inR 2 

Remarks, a) The simplex spline M(x|VV) is well-defined and unique. 
b) For the classical univariate B-splines, a similar relation as (2) holds (cf. Curry 

and Schoenberg [4]). 

Now, for an arbitrary set W = {uvo,...,tu-} of s + 1 affinely independent points 

of Rs we denote 

d(W) := det 1 1 
WQ • • • Ws 

and with this notation, we can finally introduce multivariate, normalized B-splines: 

Definition 4. (cf. [5]) Let T\ = { t t 0 , . . . ,t{s} be an element of the triangulation T 
and let K(T) be a knot set associated with T. We define 

Ki,b := { ^ l i = 0,...,;s}, |6| = fc-lf 

Vi,b := { ^ > = 0, . . . ,6,- , j = 0 , . . . , 5 } , |6| = fc-l, 
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(remember that (1) implies volJK^b] > 0 for all b with |6| = k — 1). Then, the 
normalized B-spline of order k is defined by 

N- b (x) := |rf(K i > b)| • M(x|V i > b) , |6| = k - 1 . 

2 Definition of the control net 

In this section, we present an anologue of the control polygon of univariate spline 
functions in B-spline representation for the multivariate setting in case that the 
spline functions are linear combinations of normalized B-splines as introduced in 
Definition 4. 

Assume we are given some spline function / on a compact, simply connected 
domain D as well as a triangulation T of D and a knot set K (T). Assume further 
that / has the representation 

/ = E E di,bNi,b,k- (3) 
ieJ\b\=k-i 

As in [9], we define the Greville abscissae ^ ^ by 

j 5 6 , - 1 

^ib '— k_ 1 Z^ Z ^ Ч v • 
jzzO i/ = 0 

Now, as in the univariate case, the control net is a piece wise linear interpolant 

of the control points ( ^V)- But, in contrast to the univariate case, such an 
i' < 

interpolant is not unique. It depends on the triangulation of the abscissae (which 
are the Greville abscissae in the present situation). 

Here, we give a triangulation of the Greville abscissae which is similar to 
the canonical triangulation of the abscissae of the Bezier points in the case of 
Bernstein-Bezier segments (cf. [2]). To this end, we define the set 

r : = { { e i i 6 - c i + e , . - - - . € i , 6 . c i + e . } I bj > 0, i e J, \b\ = k - l} 

and denote by T the set of different sets in f. As it is easily verified, T is a 
triangulation of D whenever (1) is true. In the special case 

Uj = *i > 3 = 0 , . . . , k - 1 , (4) 

for all vertices ti of T (then, the normalized B-splines are exactly the Bernstein 
polynomials over the respective simplices), T is exactly the canonical triangulation 
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we mentioned above (cf. Fig. 3). 

\ I 
N\a&.o"*i,lmti.2 

Fig. 2. Part of a triangulation T of D. 
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Fig. 3. The same part of D as in Fig. 2, together with the triangulation for the 
third order Bezier control net (thinner lines) 

In addition, the Bernstein polynomial bi b~ Nibk o v e r a P a r t i c u l a r simplex [T\] 
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of T reaches its maximum in ^ 5. 

In general, the topology of f for all knot sets satisfying (1) is the same as in 
the special case of (4). An example for this is shown in Figures 3 and 4. 

Over f we now define hat functions which are exactly the normalized second 
order B-splines N^ ^ 2. For these B-splines 

is true. Here, the generalized Kronecker symbol <Jy for integer vectors i, j E NJ+ , 
i = (2 0 , . . . , i 5 ) T , j - = (jo,---,.Ls)T, is given by 

s 

h — n **»*» • 

Fig. 4. The same part of D as in Fig. 2, together with the triangulation f for the 
control net of a space of third order spline functions (thinner lines) 

Now, if some spline function / over T has the representation (3), then the operator 
L, 

Lf-=E E *.b-vii6i2 
i € I | b |= fe - l 

maps / onto its control net with respect to the knot set K(T). 

Remark . Inspecting Figures 5 and 6 in Fong and Seidel [6] indicates that there, 
a similar operator to L must have been used by the authors in order to visualize 
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a control net for multivariate spline functions. But neither the operator nor the 
control net have been explicitely described there. 

3 Convergence of the control net 

In order to inquire the convergence properties of the multivariate control nets in
troduced in the previous section we start with a sequence of triangulations {T/}J^0, 

T, = {r! = {*.„,•••,*,.} | i 6 Ji C N S + 1 } , 

of the compact, simply connected subset D of Ft5, where each triangulation is a 
refinement of its predecessor. Moreover, with the number ni -f 1 of vertices in T\ 
as well as 

hi := maxdiamfTj] and <f>i := min \\t\ — tlA\2 , I £ N0 , 

we postulate the following: 

lim hi = 0 and 

0 < i , j < n ( 

-9-3 

> q with 0 < q < 1 . (5) 

(5) is sort of a equilibrium postulation: With this condition, it cannot happen that 
the refinement of the triangulations proceeds at different speeds in different areas 
of D. 

Fig. 5. Illustration of equation (6). 
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To every triangulation T[ we assign some knot set K(Ti). The choice for the 
knot sets K(T) is arbitrary as far as Definition 2 is fulfilled and / is in the 
respective spline space. In addition, we postulate 

\ftij-Ah<l-<l>i, j = 0, . . . ,*- l , t = 0,...,n/, (6) 

with <pi as in (5). (NB: (6) does not imply (1) although Fig. 5 seems to propose 
that). 

In preparation of Theorem 5 we define the operators L\ for 7] and K(Ti) by 

Iw/:=£ E <b^,fe,2 (7) 
i€J . | b |= fc - l 

for / with the B-spline representation 

/ = E E <6*U* (8) 
ie j , |fe|=/c-i 

(cp. Section 2) as well as another class of (obviously linear) operators Qi, I E No, 
by 

«</;=E E /«U>*U-
iGIt |b |=Ar-l 

The latter are the analogues of the classical variation diminishing quasiinterpolants 
due to Schoenberg. 

The composition LiQi maps the spline function / onto the piecewise linear 
function LiQif over TJ which interpolates / at the Greville abscissae £l. , , i E J/, 

|6| = k - l . 
With these operators we can now state and prove our central theorem on the 

convergence of control nets. It is similar to a result of Cohen and Schumaker [3] 
for the control polygons of univariate spline functions. 

Theorem 5. For f E C2(D) with the representations 

/ = E E «*>,* 
i€J/ | b | = / e - l 

over the triangulations T\ with respect to the knot sets K(Ti) the following is true: 

| | / - ^ / | | 0 0 ) Z , < C . b ^ m a x | | ^ a / | U ) L , . (9) 
|a| = 2 

dai da° 
Here, we have C = const. > 0. hi := maxreT. diam[r] and D a := fli • • • fls . 

OX-\ OX s 
a E NQ? the usual multimdex notation for partial derivatives in s variables. 

R e m a r k . Since we take 7] to be a refined triangulation with respect to T/_i, 
I = 1,2,..., (9) is true for all functions / that can be represented in the following 
form: 

/ = E E «6 i fc , 
iGJo |b |=Ar-l 
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i.e., (9) is true for all / that are linear combinations of normalized B-splines over 
the original triangulation, together with the original knot set K(Tb). 

P R O O F : We start with the same standard trick as in [3], here in the multivariate 
setting: 

11/ - M U D < 11/ ™ £/Q//lloo,D + WUQif - WIUD . (io) 
Now, from Lemma 6 below (all Lemmata that we use here will be given below), 
we know that the operators L/ are continuous and bounded by ~— where 7 ,^ is 
a constant that depends only on the number s of independent variables and the 
order k of the spline spaces we use. So, equation (10) becomes 

11/ - WHoo.D < 11/ - LtQtfWco.D + — H O / / - /Hoo,D • (11) 
7s,k 

Since in [5], Section 4, the relation 

11/ - Q//||oo,D < Co • ft? • max | |L> a / lkD (12) 
|a| = 2 

is shown (with hi := maxT6T, diam[r]), we only have to prove sort of an O(hf) 
asymptotics for 

| | / -I .Q./ | |oo.X> • 

In order to do so, for an arbitrary x E D with x 6 [f], f E T/, we choose some 
fixed x within the same simplex f. By Taylor's Theorem (cf. [11]) for the same 
representation as here) we get 

f(x) = f(x) + f(x) • (x - x) + Y, Wf (* + ^x,x(x - x)) • (x - x ) a (13) 
M=2a-

where f'(x) = g r a d / ( i ) and 6xX £ (0, 1). 
Since linear functions get reproduced by the linear operators L\Q\ (cf. Lemma?), 

(13) furnishes 

f(x) - L,Q,f(x) = (I- LiQt) ( Y, hD&f ( i + e*>xi* ~ 4 ) ) ' (* ~ i r I W ' 
\ |a |=2 • / 

where / is the identity on C2(D). Now, using Lemma 7 again, we get 

| | / - I .Q. / | | oo , [ f ] = 
(7 - L,Q,) ( VJ IE>a/ (x + <?.iž(. - »)) • (• - x)A 

\ |a |=2 ' / oo,[f] 

< d • \\(I - I(0.i)||oo,C • hf • тах||£)а/||оо,/> 
|a|=2 

< С 2-Л (

2-тах| |£) а/| |оо,х? • 
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Here, we set hi := max~G^ diam[f]. Note that neither C\ nor C2 depend on / ! 

Since h and h have the same asymptotic behaviour as can be seen from Lemma 8, 
we obtain 

11/ - ilQi/||oo,[f] < C3 • hf • max ||£>a/||oo,z> . (14) 
|a|=2 

And since the right hand side of (14) does not depend on our special choice for 
x and therefore f, we can take the supremum norm over D on the left hand side 
and at the end, we have 

11/ ~ L1Q./H00..D < C3 • hf - max \\D*f\\oo,D • 
|a|=2 

Together with (11) and (12), this proves our theorem. • 

Lemma 6. The operators Li are linear, continuous, and bounded. Moreover, the 
following relation is true: 

\\Ll\\oo,D < — • (15) 
75, k 

Here, the constant jSyk only depends on the number s of independent variables 
and on the order k of the spline space under scope. 

P R O O F : Each of the operators L\ is an isomorphism between finite dimensional 
vector spaces as can be seen from their definition (cf. (7) and (8)). Knowing this, 
the linearity, continuity, and boundedness are obvious. 

In [5], Theorem 4.2, the authors show that for any sequence c = {c^ b}iej,\h\=k-i 
the inequation 

7 . , * l | c | | e o < | | £ £ C i | b N i 6 > , | | oo ,D < HcHoo (16) 
i€J | b |=*- l 

is true. Here, the maximum norm ||c||oo of a vector c = {cifb}iej.|b|=fc-i is given 
as usual by 

||c||oo := max \c{ b\ . 
i€J,|6|=fc-l 

By inequality (16) we see the following: 

\\Llf\\oo,D = l l £ E < b ^ 6 ; 2 | | o o , D 
iGJ, |b|=/c-l 

(16) t 
< IK^bheJi . lb lsfc- l l loo 

(<6) 7;-HE E « 6 , J i o c 
1S,K i€Ji |b|=fc-i 

= — • ll/IUD . 
ls,k 

From this we easily conclude (15). 
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Lemma 7. The operators L\Q\ are linear, continuous, and bounded. They satisfy 
the relation 

UQif = f (17) 

for every linear function f as well as 

H-wQ.Hoo.D = 1 • (18) 

PROOF: As in Lemma 6 above, each of the operators LiQi is an isomorphism 
between finite dimensional vector spaces and therefore the linearity, continuity, 
and boundedness are obvious again. 

In [5], the relation 

Qif = f 

for every linear function is shown, and since L\f is the (unique) piecewise linear 
interpolant of / over 7}, we have 

UQif = Uf = f 

for all linear functions / and for all / E No-
Equation (18) can be realized as follows: 

\\UQ,f\\oo,D = u £ £ /(3,&)#i,6,aii~.* 
ieJi |b|=/c-i 

(16) \ 
< \\{f{Zitt,)}ieJit\b\=k-l\\oo 

< ll/lloo,D , 

i.e. 11L;Q/11oo,D < 1 f°r all / E No- With the test function / , / E 1 on D, we get 

| |L .Q// | |oo,D = H/Hoo.D 

because of (17), and so ||L/Q/||oo,D = 1, / € No, is true. D 

Lemma 8. For the quantities h\ and hi as in the proof of Theorem 5 and q from 
(5) we have the following: 

\ q h \ <hi < ~.h\ , leN0 . (19) 
o o 

PR OOF : For any simplex f\ € 7}, n = {^b-e.+eo ' • • -'tlh-ej+e.)* w e h a v e 

diam[T/] = max | | ^ { b _ e + e ~ ^ b _ e + e }||2 
0<H,v<s ' J » > J 

= max \\tli b - tl
K<K\\2 , |6 | = * - 1 , . € N 0 . 
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Now, it is easily seen by (6) t ha t 

0<
min< 11*1 - * . J I - - O ^ Í < diam[íi] < m a x ||i{ - * { j | 2 + - ^ , l € N 0 

is t rue. This implies 

1 2 
- 0 / < maxdiamff^] = h\ < h\ H—0/ , l E N 0 , 
3 f.ef, 3 

and finally with (5) and 4>\ < h\ we obta in (19). • 
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