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A Landesman-Lazer Type Condition and the Long 
Time Behaviour of Floating Plates 

EDUARD FEIREISL, LEOPOLD HERRMANN, O T T O VEJVODA 

Abstract. A dynamical plate theory model is shown to be dissipative in the sense of 
Levinson and eventually globally oscillatory 

1991 Mathematics Subject Classification. 35B35, 35B40, 35Q20 

(Dedicated to the memory of Svatopluk Fucik) 

In the Kirchhoff model, the small transversal vibrations of a thin plate with the 
reference configuration ft C Ft2 are described by means of a function u = u(x, t), 
x = (x\, X2) E ft, t G H 1 satisfying the equation 

pshuu + DA2u = T(t, u) on ft x IR1 (KE) 

where ps is the material density, h denotes the thickness, D the flexural rigidity 
and the operator T stands for external forces to be specified below. 

We suppose that the plate is floating freely in a liquid so that there are no 
additional geometrical constraints for u along the boundary r of ft. Hence any 
admissible solution has to comply with the natural boundary conditions 

d A ,- J • — A u + l - o - — 
OV OT 

д2u д2u 2 2 д2u 
0, (B) 

d2u 
crAu + (1 - a)—- = 0 on T x R 1 

ovz 

where a E (0, | ) is the Poisson ratio and v, r are respectively the normal and 
tangent vector to F. 

The external force density T = Tg + T^ + Tj + Te results from the competition 
of the gravity component Tg, the buoyancy component Tb and the external friction 
Tj. The remaining part Te represents an external load or inertial forces caused 
e.g. by waves on the liquid surface. 

Denoting by g the gravity constant we have 

Tg = -gpsh. (Pi) 

If the zero level of the vertical coordinate coincides with the liquid surface, we 
obtain 

Tb = gpt min{/i, (A/2 - u)+} (P 2 ) 
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with pi the liquid density and v+ = max{t;, 0]. 
The external friction term is given by 

Tf = -d(fudx)ut. (P3) 
Jn 

The rather awkward from of (P3) should correspond to the obvious fact that 
the friction coefficient varies when passing from the air to the liquid. A typical 
situation is 

{ = d2 for z < -z0 < 0, 

e[dud2] for ze (-*o, *o), (P4) 
= d\ for z > z0 > 0 

where d\, d2 are strictly positive but generally distinct constants, and d is a Lips-
chitz continuous function. 

The external forces are of the form 
Te = pshq(x,t). (P5) 

Finally, we determine the initial state 

w(-, t0) = wo, M - , *o) = u>i (I) 

to obtain an evolution problem (KE), (B), (I) we shall deal with. 
As we show, or rather recall, in Section 1, the problem is well posed and 

generates a process on an appropriate energy space. Consequently, the first and 
quite natural conjecture would be that the process is dissipative in the sense of 
Levinson because of the presence of the damping term Tf. More specifically, any 
trajectory ends in a fixed bounded subset of the phase space regardless the size of 
the initial state. 

From the more physical point of view, however, such a result calls for additional 
restrictions concerning the data. If any solution is to remain bounded for all times, 
we should have 

Pt> ps- (Pe) 

Moreover, the external force Tt is to be dominated by Tg) Tb in order to 
eliminate large oscillations due to resonance phenomena. Analytically, it leads to 
a Landesman-Lazer type condition well known from the theory of boundary value 
problems (see Section 2, and also Fucik [3]). 

Adopting the above stipulations we are able to prove that the process in ques
tion is dissipative (see Section 2, Theorem 1). 

A rough statement of our ultimate goal is as follows: Once a solution is in 
the absorbing set, it oscillates around the rest position. To prove this, even more 
restrictions imposed on the function q are necessary (see Section 2, Theorem 2). 
Indeed, one easily imagines the situation when, for instance, q is positive and so 
is u for all times. 
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Our final remarks concern the reference material. To begin with, the model 
equation is probably the simplest one we could choose. A more detailed treatment 
of the dynamical plate theory may be found in Lagnese-Lions [5], The underlying 
idea we adopt is that the problem is essentialy linear, both geometrically and 
physically. From this point of view, there seems to be no stumbling block to 
generalize the results to the equations containing the rotational inertia term along 
with internal damping etc. (cf. [5]). 

The nonlinear theory (see e.g. Antman [1], Ball [2]), however, would require, 
vaguely speaking, a more sophisticated approach. 

The one dimensional case of a floating beam has been treated by Lazer-Mc Kenna 
[7], [8]. Attacking the problem both analytically and numerically they obtained 
a lot of interesting results concerning the time-periodic solutions which are of 
particular relevance to Section 2 of the present paper. 

Landesman-Lazer type problems have been discussed at length by many au
thors. Originated by the paper of Landesman-Lazer [6] there have appeared a 
considerable amount of literature, a complete list of which lies beyond the scope 
of our paper. Note, however, that a vast majority of authors addresses the bound
ary value problems whether evolutinary, i. e. the existence of periodic orbits to 
Hamiltonian systems, or stationary. In our context, the conditioon determines the 
asymptotic behaviour of an evolution problem. 

1 Weak formulation and preliminary results 

In what follows, all the physical parameters are supposed to be constant. To 
simplify the writing, we rescale the equation (KE) to a more concise form 

utt + d( u dx)ut + A2u -f f(u) - q on ft x (R1. (E) 
Ja 

In agreement with the hypotheses (Pi)-(Ps), we assume 

d, / : Ft1 -> IR1 are globally Lipschitz continuous, (Ai) 

qeC^nxR1). (A2) 

We introduce a bilinear form 

,, , [d2u(d
2v a v o/l x d2u d2v d2u,d2v a v , 

b^ V) = J ^{dx4+ad4^-2|[1^^)^1^^1^
 + M (M+^ )d^ 

The Green formula yields 

b(u, v) = / A2uvdx 
Jn 

for u, v smooth, u satisfying (B). 
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Assume that the boundary T is Lipschitz. We construct a space II2(-1) via 
completion the set of all smooth functions on Q with respect to the norm 

\\v\\ = (b(v,v) + \v\2)% 

where |v|2 = Ja v2 dx denotes the norm on L2(Q). 
It is easy to observe that H2(0) coincides with the standard Sobolev space of 

functions whose generalized derivatives up to the order two belong to L2(£l)- As 
a consequence of the well known embedding theorems, we get 

H2(Q)CC(Q). (1.1) 

As a next step, we define a self-adjoint operator 

A:D(A) CL2(Cl)-+L2(tt), 

D(A) = {v | v G H2(ft), there is C E L2(tt) such that (1.2) 

b(v, w) + / vwdx = / (wdx for all w G H2 (£})}, 
Ja Jn 

Av = C ~ v 

with the null space 
N(A)=span{l, xux2}. (1.3) 

It is classical result of the linear semigroup theory that the solution operator 
to the abstract problem 

utt + Au + u = 0, u(0) = no, ut(0) = ui (L) 

generates a group {Tt} of linear isometries on the enregy space H2(0) x L^Q), 
specifically, 

(u(t), ut(t)) = 7J(no, ux), t G R1, Tt e C(H2 x L2), 

\ut(t)\
2 + \\u(t)\\2 = const for all t £ R1 

(see Lions-Magenes [9]). 
By virtue of (Ai), (A2), the problem (E), (B), (I) may be viewed as a semilin-

ear Lipschitz perturbation of (L). Consequently, the variation-of-constants formula 
combined with the Banach fixed point theorem yields local existence and unique
ness. As the nonlinearities are globally Lipschitz, the Gronwall lemma guarantees 
that any local solution may be continued to solve the problem on IRi. 

Let us sum up what has been achieved. 

Proposition 1. Let the hypotheses (Ai), (A2) hold. Then for any pair uo E 
H2(Q), u\ G L2(Q)} and any to G R1 there exists a unique solution u, 

u G C(R1 , H2(ty) O C^R 1 , L2(fi)), 
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of the problem (E), (H), (I), i. e. u satisfies (I) along with the integral identity 

/ / -ut(pt + (d( udx)ut + f(u) - q)(pdx + b(u, (p)dt = 0 (1.4) 
J ~oo Jn J a 

for any test function <p E C°°(0 x R1) with a compact support in 0 x Ft1. 

2 Main results 

To achieve our goal, further restrictions concerning the data are needed: 

0 < Ji < d(z) <d2<oo for all z E R1, (A3) 

\g(x, t)\<ci for all x, t, (A4) 

-co < f_oo = lim f(z) < 0 < lim f(z) = foo < oo (A5) 
z —• — oo z-¥oo 

Note that (A3) corresponds to (P4) while (A5) agrees with (P6). Here (and always) 
the symbols c4-, i = 1, 2, . . . stand for positive constants. 

Next, it is convenient to have f(0) = 0. To this end, we shift u in the vertical 
direction as the case may be. Bearing the last agreement in mind we postulate 

there is a continuous function k : [0, oo) —•> (0, oo) (AQ) 

such that 

f(z)z >k ( |z i ) z 2 fo r a l lzElR 1 . 

Note that (Ae) is in full agreement with (Pi), (P2) and that k(z) —> 0 as z —> oo 
by (A5). 

To conclude with, we postulate a Lndesman-Lazei type condition 

f_oo + є < —— / q(x} t)dx < foo-є (є> 0) for all t 
~ m(íì) Jӣ 

(Aт) 

where m denotes the 2-dimensional Lebegue measure. 
The main difficulty encountered when looking for bounded solutins is that 

neither is the operator A coercive nor the nonlinearity f strong enough to prevent 
the system from possibly growing oscillations. Thus the most delicate question is 
to estimate the compnent of u belonging to the null space N(A). To this end, it 
is desirable to restrict the class of admissible solutions to a set S such that 

N(A) fl S = {c}ceJRi - the space of constants. (2.1) 

The usual way to achieve (2.1) is to consider symmetric functions. Say that 
!v2 = [—a, a] x [—b, b] is a rectangle. We set 

5 = {v\v{zi, x2) = v(-zi, x2) = v(xu - x2) for alia? G ft}. 
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Then we have 
A:D(A)nS->L2(fynS (Si) 

and, what is more important, 

for any v E 5, we have f(v) E S. (S2) 

Finally, one easily observes that (2A) holds. 

Note that a similar result may be achieved when considering a circle in R2 and 
taking radially symmetric functions e tc 

Having completed the preliminary discussion, we proceed to the statement of 
the main result. 
Theorem 1. Let the data satisfy the hypotheses (Ai)-(A7). Suppose that the 
geometry of O admits the existence of a subspace S C L2(Q) such that (Si), (S2) 
along with (2.1) hold. Finally, let q satisfy 

q(-,t)€S foranyte^1- (2.2) 

Then there exists R such that any solution u of (E). (H); (I) starting from the 
imtial data u(',t0) = u0 E H2(Q)nS, ut(-,to) =-u\ E L2(Q) 0 S satisfies 

limsup||<i(t)|| < It, l imsup|u(t) | < R. (2.3) 
t—foo t->oo 

Corollary 1. The constant R may be chosen of the form 

R=c2m3x\q(x,t)\. (2.4) 
X, t 

Corollary 2. Under the hypotheses of Theorem 1, any solution of the problem 
(E), (B), (I) with q = 0 tends to zero. 

R e m a r k . If q is independent of t, Theorem 1 can be proved more easily using a 
Lyapunov function. In that case, no symmetry assumption are necessary. 

PROOF OF COROLLARY 1: Once a solution enters the absorbing set, its supremum 
norm is bounded due to (1.1). According to (Ae), we have 

f(u(t))u(t) > c3u
2(t) 

for all t large enough. Consequently, the standard energy estimates for coercive 
systems imply (2.4). • 

The proof of Theorem 1 will be postponed to Section 3. Our eventual goal is 
to obtain more information about the behavior of u for large times. We shall make 
further assumptions concerning the driving force q: 

I / / q(x, r ) d x d r | < c4 for all s, t E R1, (A8) 
Jt Jn 
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there is a triple K, t, S of strictly positive constants such that for any interval 

I C B,1, length (I) > t there are points 

tf, rj", tj", t^ G I, tg" — t* = 12 — tj" = S such that (Ag) 

/ 0 g ( « , t)dx > K for all t e [tf, t j ] , 

J u o ( x , t ) d z < K for all I G [tjf, ^ l -

R e m a r k . Observe that (As), (Ag) hold if, say, q is ^-periodic with a period T, 
g r̂ 0 and 

/ / Ф, r) 
Jo -Ia 

dæ dr = 0. 

T h e o r e m 2. In addition to the hypotheses of Theorem 1 assume that q satisfies 
(A8), (A9). 

Then there exists a number j > 0 such that for any solution u O/(E), (B), (I) 
(with the initial value in S) there is a time T such that 

m{(x, t)\x eti,teJ, u(x, t) > 0} > 0, 
m{(x, t) | x G Q, t G J, u(x, t) < 0} > 0 (2.5) 

/Or any interval J C [T, oo), length (J) > j . 

The proof of Theorem 2 will be given in section 4. 

3 The proof of Theorem 1 

(A) Under the hypotheses of Theorem 1 we have 

u(t) e H2(Q) n 5, ut(t) e L2(fy n Sfor all t e R1. 

Consider the orthogonal projection 

P : L2(fi) f l S - i AT(A) n 5 = {c}cem. 

Any solution u may be decomposed as the sum 

u(t) = v(t) ®w(t), v = Pu 

where v is, in fact, a scalar function of t and 

b(w(t),w(t))>\\\w(t)\\\ A > 0 . (3.1) 

(B) The component w solves a linear problem 
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wtt + d(t)wt + Aw = r(t) (3.2) 

where, by virtue of (A3)) 

0 < (1i < d(t) < d2 for all t (3.3) 

<md r(t) = (Id-P)(q(t)-f(u(t))). 
As the functions q, f are bounded, we deduce 

HOI 2 < \q{*) - f{u(t))\2 < ^ for all t. (3.4) 

The point is that the linear operator A in (3.2) is coercive (cf. (3.1)) so that the 
standard technique of energy a priori estimates for damped hyperbolic problems 
may be used to obtain the estimate 

||iv(/)||2 + \wt{t)\2 < c6[exp(-c7(t - *0))(IM*o)l|2+ 

+ |iv,(l0)|2) + c5] for all t > t0. (3.5) 

The relation (3.5) can be obtained formally via multiplying (3.2) by wt -\-e\w, 
S\ > 0 small, and rigorously using a regularization technique (we refer to Lions-
Magenes [9] or Haraux [4] for details). 

Consequently, there is a time T, the magnitude of which depends solely on the 
norm of the initial data Ko, ™I such that 

||iv(i)||2 + \wt(t)\
2 < c8 for all t > T. (3.6) 

The constant eg is, of course, independent of the initial state. (C) The component 

v satisfies a scalar differential equation 

Vtt + d(v)vt + / f(w(x, -) + v)~ q(Xì •) dx = 0 (3.7) 
Jӣ 

where we should have written, strictly speaking, i) instead of vt. Using the standard 
regularity theorems one observes that v is classical solution so that the formal 
obstacles encountered in part (B) do not occure here. Note that w is continuous 
and the supremum of w is uniformly bounded as soon as time reaches T. 

To begin with, observe that 

1 d 2 , 2 

_ _ „ t + d l V t < C 9 ) 
which leads immediately to the estimate 

\vt(t)\ < c 1 0 f o r all* >T. (3.8) 

To complete the proof of Theorem 1, we have to estimate v(t). 
By virtue of the Landesman-Lazer condition (A7), the function 

F(t, v) = I f(w{x, <) + » ) - «(*, 0 àx 
JÍÏ 
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satisfies 

F(t, v) > K! > 0, F(t, - v) < - K i for all* > T, v > v0. (3.9) 

Neither vo nor K\ depend on w. 

Lemma 1. There is a sequence tn —> oo such that 

\v(tn)\ <vo for n= 1,2, . . . (3.10) 

PROOF OF LEMMA 1: Suppose, for instance, that 

v(s) > v0 for all s > Tx > T (3.11) 

We integrate (3.7) to obtain 

vt(t) - vt(s) + D(v(t)) - D(v(s)) + / F(r, v(r)) dT = 0 (3.12) 

where •£-&(.*) = d(s). 

Combining (3.3), (3.8) and (3.9) we deduce the estimate 

dxv(t) < 2cio - (t - s)Ki + d 2 K * ) | 

for any t>s>T\ which contradicts to (3.11) for t — s large. 
In case v(s) < —vo for all large s) we get a contradiction in a similar way. • 
Let s E [tn, *n+i] D e a point where 

v(s) — max |^(r) | . 
re[tn,tn+i] 

Then either 
K«)|<e0 . (3.13) 

or 
\v(s)\>v0, s(E(tn)tn+1), vt(s) = 0. (3.14) 

Suppose that in the latter case v(s) > v$. We pick up s G [tn, s) such that 

v(B) = v0> v|[,,q > vo- (3.15) 

Inserting t = s in (3.12) and using (3.3), (3.8) and (3.9) we obtain 

div(s) < cio + J2^o- (3.16) 

If v(s) < —vo, the same arguments may be used to get 

div(s) > -cio - d2vo. (3T7) 

Combining (3.10) together with (3.13), (3.16), (3.17) we obtain 

|v(*)| < en for all* > T . (3.18) 

Finally, the relations (3.6), (3.8), (3.18) complete the proof of Theorem 1. 
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4 The proof of Theorem 2 

The conclusion of Theorem 1 gives a time T such that 

\\u(t)\\ < 2It, \ut(t)\ < 2R for all t > T. (4.1) 

Assume that 
u > 0 a.e. on 0 x J (4.2) 

where length (J) = j , J C [T, oo). 
Similarly as in Section 3, we project the equation (E) onto N(A) to obtain the 

scalar equation 

vtt + d(v)vt + / f(u(x, t)) dx= q(x, t) dx (4.3) 
Jn Jn 

where the projection v satisfies 

t; > 0 on J. (4.4) 

In what follows, we adopt to certain extent some ideas from the qualitative 
analysis of ordinary differential equations (see e.g. Reissig-Sansone-Conti [10]). 

Integrating (4.3) for s, t £ J we get 

vt(t)-vt(s) + D(v(t))-D(v(s))+ 

+ Is In f(u(x> r ) ) d x d r = Is In «f(x» r ) d x dr-

In accordance with (Ag), (4.1) everything is bounded and, consequently 

/ f(u(x, r))dxdr <ci2R + c4 = c13. (4.5) 
J j Jet 

If j is large enough, there is a subinterval I C J, length (I) = £ (cf. (A9)) such 
that 

/ f f(u(x, T))dxdT<c13
£-. (4.6) 

Ji Jn J 
As a consequence of (1.4), (4.1) we have 

max \u(x) t)\, max|v(t) | > c i 4 . (4.7) 
X y T S 1 T S J-

As u > 0, we may use (AQ) to obtain 

Ii In f(u(xi T)) d ^ d r > cis\u(x, r)\dxdr > 

> ci5/ci4 | t i(x, r)\2 dxdr > c i 6 ff V2(T) dr. 

Thus we infer that 
C Í 
/ i ; 2 ( r ) d r < c i 7 - т . (4.8) 

Jl э 
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We recall that 

| — v2{t)\ = 2\v{t)vt{t)\ < cis on I. (4.9) 

Thanks to (4.9) we may estimate 

- > 
4ci8 1 

/ il2(T)dT> (maxv2 v 

and, consequently, 

Next, we use (4.3) to obtain 

max|v(í) | < c19(-г) . (4.10) 
t£j J 

\vtt\ < c2o on I. (4.11) 

By means of the Taylor expansion formula, we get 

v{t) - v{s) = vt{s){t -s)+ l-{t - s)2vtt{Z), <e € [s, t]. 

Thus the choice {t — s) = ( i)« along with (4.10) lead to 

max|w t(0l<C2i(-:)*. (4-12) 
tei j 

To conclude with, we combine (4.3) with (4.10), (4.12) to obtain the relation 

m a x K ( r ) - / q(x, t) dx\ < C 2 2 ( T ) * . (4.13) 
tz1 Jn 3 

To follows from (A9) that 

Vt(tt)-vt(tt) = $vtt(T)d:> 

-6c22(i)i+tfnn+fnq(x,T)dxdT>K6-c22(f)i. 

Thus there is a point s E / such that 

\Vt(s)\>l-K5-Sc22(
l-:)i. (4.14) 

I J 

Comparing (4.12), (4.14) we get 

l-K6<c23(
l-:)i (4.15) 

** 3 

which yields a bound for the length j . 
The case u < 0 in (4.2) may be treated in a similar fashion. 
Theorem 2 has been proved. 
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