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Some remarks on semilinear problems 
at resonance where the nonlinearity depends only 
on the derivatives 
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Abstract. 

1991 Mathematics Subject Classification: 34B15, 34C25 

(Dedicated to the memory of Svatopluk Fučík) 

1 Introduction 
There has been a wide literature devoted to the study of the Neumann and the 
periodic boundary value problems for differentiel equations of the form 

u" + g(u)=f(t), 

and S. Fucik, after several pioneering contributions to this class of problems, has 
given an outstanding survey of the state of the art in the late seventies in the 
famous monograph [2] which constitutes his mathematical legacy. 

In a recent paper [1], Canada and Drabek have considered the solvability of 
scalar problems of the form 

u" + g{u') = f{t)y t£[a, 6], 

with Neumann or periodic boundary conditions, a situation which has been less 
studied that the previous one (see the references in [1]). Using a shooting argument 
and the implicit function theorem in Banach spaces, Canada and Drabek have 
proved that if g is of class C1 and bounded, and if we write / = / -f / with / 
the mean value of / , then, for each / , there exists a unique / such that the above 
problem has a solution. They also observe that it should be interesting to study 
related problems for higher order equations and systems of equations. 

The aim of this short note is to show that a very simple approach based upon 
some fixed point theory applied to one of the equations of the alternative method 
provides such extensions and generalizations to situations where g is neither or 
class C1 nor bounded. In particular, for the equation above, those two conditions 
upon g can simply be dropped without loosing the conclusion. 
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2 The Neumann problem 

Let I = [a, 6], g : I x IRn —> Rn , (l, v) H-> g(l, t>) a Caratheodory function and 
/ G L1^ f^n)- We consider the Neumann problem 

u"(t) = g(t, u'(t)) + f(t), (tel), u'(a) = u'(b) = 0. (1) 

If we set v = u', then (1) is equivalent to the problem 

v'(t) = g(t, v(t)) + f(t), (t e / ) , v(a) = v(b) = 0, (2) 

and if v is a solution of (2) and 

w(t) = / v(s) ds, 
J a 

then, for each c£ lR n , u = c + iv will be a solution of (1). For each h G F2(I, IRn), 
we set 

Һ = — — / h(s) dB, Л(t) = /i(г) - b. 
b - a Ja 

Concerning problem (2), we first have the following simple lemma. Let C(I, lRn) 
be the space of continuous mappings from I into lRn with the usual supremum 
norm ||. | |. 

L e m m a 1. If v is a solution of the fixed point problem in C(I, IRn), 

v(t) = f [g(s, v(s))-gTMY) + f(s)}ds, 
J a 

then v is a solution of (2) with 

(3) 

f=-g(.,V(.)) + f. 

P R O O F : If v is a solution of (3), then v(a) = 0 and 

v(b) = f [g(s, v(s))-g(., v(.)) + f(s)]ds = 0. 
J a 

Moreover, for a. e. t G I, we have 

v'(t)=g(t, v(t))-g(., v(.))+f(t), 

and the proof is complete. D 

Lemma 1 has the following immediate consequence. For each p > 1, let I>(I, 
IRn) be the subspace of h G LP(I, IRn) such that h = 0. 
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Corollary 1. To each f G LX(I, Rn) and to each solution v of the corresponding 
fixed point equation (3), there corresponds some f G IRn such that the problem (2) 
with / = / + / has a solution. 

WTe can now use fixed point theory to prove the existence of solutions of (3), 
and hence the existence of solutions for (2), each of one providing a family of 
solutions for (1). 

T h e o r e m 1. Assume that 

g{t, v) —> 0 whenever \v\ —» oo, (4) 
\v\ 

uniformly a. e. in t G I. Then, for each f G Ll{I, [Rn) there corresponds some 
f G Rn such that problem (1) with f = / + / has a solution u, and hence a family 
of solutions c + u where c G Rn is arbitrary. 

P R O O F : If 

T : C(I, R n ) - + C ( I , (Rn) 

is defined by 

T(v)[t]= I [g(s, v(s))-g(., «(.)) + f(s)]ds, 
J a 

then it is standard to check that T is a completely continuous mapping and the 
assumption easily implies that 

^nP' -> 0 whenever ||v|| -> oo. 

The result follows easily from the Schauder fixed point theorem (cf. [2] or [4]). • 

R e m a r k 1. Condition (4) is in particular satisfied when |#(l, u)\ is bounded by 
an L1-function of l, so that Theorem 1 extends to systems the existence part of 
Theorem 3.3 in [1]. 

Let now G : Rn -> E be a ^-function and VG its gradient, / G L2(I, Rn) 
and consider the Neumann problem 

u"{t) = VG{u( {t)) + f{t)} (tel), u'{a) = u'{b) = 0. (5) 

T h e o r e m 2. For each f G L2(I, Rn) there corresponds some f G Rn such that 
problem (5) with / = / - f / has a solution u, and hence a family of solutions c + u 
where c £ IRn is arbitrary. 

PROOF: By Lemma 1, we must prove the existence of a solution of the fixed point 
problem 

v(t)=S(v)[t] := [ [VG(v(s))-VG(v(.)) + f(s)]ds, 
J a 
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in C(I, IRn). Of course, S is completely continuous and the existence of a fixed 
point will follow from the Leray-Schauder continuation theorem (see e. g. [2], [3] or 
[4]) if we find an a priori bound independent of A £ [0, 1] for the possible solution 
of the family of equation 

v =\S(v), A E [ 0 , 1]. 

If v is such a solution for some A £ [0, 1], then 

v'(t) = \VG(v(t)) - \VG[v(.)] + A/(t), v(a) = v(b) = 0, 

and hence, taking the inner product with v'(t), integrating over I and using the 
boundary conditions and Schwarz inequality, we get 

f \v'(t)\2dt = X f (f(t)\v'(t))dt< f \f(t)\2dt I \v'(t)\2dt 
J a J a J a Ja 

1/2 

and hence 

IKIU- < l l /V 

From the first boundary condition we deduce immediately that, for each t E I, 

\v(t)\ = I f v'(s) ds\ <(b- a)^2Wv'\\L2 <(b- a)^2Wf\\L^ (t € / ) , 
J a 

which provides the a priori bound for v. • 

Corollary 2. Let g : (R —> (R be continuous. Then for each f E L2(I), there 
corresponds some f E Ft such that the Neumann problem 

u"(t) = g(u'(t)) + f(t), u'(a) = u'(Ъ) = 0, (6) 

with f = f + / has a solution u, and hence a family of solutions c + u where c £ Ft 
is arbitrary. 

Remark 2. The above result in Corollary 2 is sharp, as shown by the linear 
problem 

u"(t) = Au'(t) + / + /(*), u'(a) = u'(b) = 0. 

Elementary computations show that, for A / 0, the unique / for which a solution 
exists is given by 

and, for A = 0, the corresponding unique / is zero. 
In this linear example, for each / , the existence holds for one / only. This 

is always the case for scalar equations, as shown by the following result which 
generalizes in various directions the 'uniqueness' conclusion of Theorem 3.3 of [1]. 
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T h e o r e m 3. Assume that n = 1. Then, for each f G &(!), there exists at most 

one f G iR such that problem (1) with / = / + / has a solution. 

PROOF: Problem (3) can be written in the equivalent form 

«(*) = / > ( « > i>(*) ) - r + 7(«)]cU, 

r - = { - ( . , » ( . ) ) , 

or 

v'(t) = </(*, t , ( f ) ) - r + 7(Q, »(a) = 0, 

r = g(-, «(.)). 

Assume that there are two different values n < r2 for which the problem (3) has 
solutions, respectively v\(t) and v2(t). Then, 

v\(a) = v2(a) = 0, 

v[(t)=g(t, vi(t))-n + f(t), 

v'2(t) = g(t, v2(t)) -r2 + f(t) < g(t, v2(t)) - n + f(t), 

for < G /. Notice that, as vi(a) = v2(a) = 0 and 

vi(a) = g(a,0) - n + 7(0) > g(a,0) - r2 + 7(0) = v'2(a), 

we shall have vi(t) > f2(2) for all t G]a, a + e[ and some e > 0. We shall get a 
contradiction by showing that v\(t) > v2(t) for each t £]a, 6], and in particular 
that vi(b) > v2(b). If it is not the case, there will some c £]a, b[ such that 

v\(t) > v2(t), (t G]a, c[), vx(c) = v2(c). 

Hence, for / G]a, c[, we have 

M O - V2(c) Vi(t)-Vj(c) 
t — c t — c 

and thus v2(c) > v[(c), a contradiction with 

v2(c) = #(c> M c ) ) - r2 + 7(c) = #(c, ^ (c) ) - r2 + 7(c) < 

< g(c, vi(c)) - n + 7(c) = vi(c)-

D 

When n > 1, the corresponding uniqueness appears to be much harder to get, 
as there is no ordering of the solutions of the Cauchy problem. 
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3 The periodic problem 

Let g and / be like in the beginning of Section 2. We consider the periodic problem 

u"(t) = g{t, u'(t)) + /(*), (t G I), u(a) - u(b) = ti'(a) - u'(b) = 0. (7) 

If we set v = u', then (7) is equivalent to the problem 

v'(t) = g(t, v(t)) + f(t), (t e I), v(a) - v(b) = 0, / v(s) d.s = 0, (8) 
J a 

and if v is a solution of (8) and 

w(t) = f v( 
J a 

rt 

(s)ds, 

then, for each c G lRn, u = c + tv will be a solution of (7). Using the notations 

of Section 2, we know (see e.g. [3]) that for each h G Ll(f IRn), there exists a 

unique absolutely continuous H(h) such that 

H(h) = 0, H(h)(a) - H(h)(b) = 0, and [H{h)]'{t) = h(t) 

for a. e. t G I. Explicitely, 

H(h)(t)= f h(s)ds - — — / / b(s)dBdl. 
Ja °-aJa Ja 

We first have the following analog of Lemma 1. 

L e m m a 2. If v is a solution of the fixed point problem in C(I, lRn), 

v =H[g(., v(.))-g(., »(.)) + / ] , (9) 

then v is a solution of (8) with 

f = -g(., v(.))+f. 

P R O O F : If v is a solution of (9), then v = 0 and v(b) — v(a) = 0. Moreover, for 
a. e. t G I, we have 

v'(t)=g(t, v(t))-g(., v(.))+f(t), 

and the proof is complete. • 

Lemma 2 has the following immediate consequence. 

Corol lary 3. To each f G B1(I, Hn) and to each solution v of the corresponding 
fixed point equation (9), there corresponds some f G Ftn such that the problem (8) 
with / = / -f / has a solution. 
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We can now use fixed point theory to prove the existence of solutions of (9), and 
hence the existence of solutions for (8), each of one providing a family of solutions 
for (7). We do not repeat the proof of the first result, which is completely analogous 
to that of Theorem 1. 

T h e o r e m 4. Assume that 

g(*\ v) 0 whenever \v\ —> oo, (10) 

uniformly a. e. in t £ I. Then, for each f £ Ll(I, (Rn) there corresponds some 
/ £ IRn such that problem (7) with f = f + f has a solution u, and hence a family 
of solutions c + u where c £ IRn is arbitrary. 

R e m a r k 3. Condition (10) is in particular satisfied when \g(t, u)\ is bounded by 
an L1 -function of t, so that Theorem 3 extends to systems the existence part of 
Theorem 3.4 in [1]. 

Let now G : (Rn -> (R be a ^-function and VG its gradient, / £ F2(I, (Rn) 
and consider the periodic problem 

u"(t) = VG(u'(t)) + f(t), ( r £ I ) , u(a)-u(b) = u'(a)-u'(b) = 0. (11) 

Again, the proof of the following Theorem 5 is entirely similar to that of Theo
rem 2, except that, at the end, we use the Sobolev type embedding identity given 
on p. 208 of [3] instead of the fundamental theorem of the calculus and Schwarz 
inequality. 

Theorem 5. For each f £ L2(I, IRn) there corresponds some / £ lRn such that 
problem (11) with f = f + f has a solution u, and hence a family of solutions 
c + u where c £ lRn is arbitrary. 

Corollary 4. Let g : IR —> 1R be continuous. Then for each f £ L2(I), there 
corresponds some f £ IR such that the periodic problem 

u"(t) = g(u'(t)) + f(t), u(a) - u(b) = u'(a) - u'(b) = 0, (12) 

with f = / + / has a solution u, and hence a family of solutions c + u where c £ IR 
is arbitrary. 

Theorem 3 can also be repeated in the present setting. In the special case of 
the linear problem 

u"(t) = Au'(t) + / + /(*), u(a) - u(b) = u'(a) - u'(b) = 0, 

elementary computations show that, for each / , the unique / for which a solution 
exists is / = 0. 
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4 Remarks on some higher order problems 

If k > 2 is an integer, the same approach leads to similar results for 'Neumann 
problems' on I of the form 

u^(t) = g(t, u^k^(t)) + f(t), u«>(o) = 0, (1 < j < k - 1), u<fc-1>(6) = 0, (13) 

and to periodic problems of the form 

u<fc>(i) = g(t, u(k~V(t)) + f(t), u^(a) - u« (6 ) = 0, (0 < j < k - 1), (14) 

when g satisfies the conditions respectively given in Section 2 and 3. Indeed, 
letting v = u(k~~l\ we see that if v is a solution of the problem (2) (resp. (8)), 
then, for every c £ (Rn, 

U{t) = c+L(i^jrv{s)ds> 
(resp. 

u =c + H^k-l\,) 

will be solutions of (13) (resp. 14). Hence the sufficient conditions for the existence 
of a solution of (2) (resp. (8)) given in Section 2 (resp. Section 3) will provide 
sufficient conditions for the existence of a solution of (13) (resp. (14)). 

The same methodology applies to higher order problems on I of the form 

u^(t)=g(t, u<p>(<), . . . , u0»+9--)(*)) + /(*), 

uW)( o )=0 , ( l < j < P + ? - l ) , u<p+?-1>(6) = 0, (15) 

u<P+*>(t) =g(t, u<p>(<), . . . , u<p+«-1><t>) + f(t), 

u(j>(o) - u<J')(6) = 0 , ( 0 < j < p + g - l ) , (16) 

where p > 1 and q > 1 are integers. Setting v = u<p>, we are reduced to consider 
the problems 

v^(t) = g(t, v(t), . . . , v^\t)) +f(t), 

v^(a) = 0, (1 < j < q- 1), v<"-1>(6) = 0, (17) 

or 

»<«>(*) =*(.•,'«(<), . . . . vl'-Vit)) + /(<), 

t,(j)(o)-u<J'>(6) = 0, ( l < j < g - l ) , u = 0. (18) 

To each solution u of (17) will correspond the solutions 

u(t) = c+ Í 
J a W*'4-
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of (15), and to each solution v of (18) will correspond the solutions 

u = c + Hpv, 

where c £ IRn is arbi t rary. The corresponding fixed point problems to be consid
ered in the space C ^ ~ 1 ' ( / , R n ) of mappings of class C^"1) from I to IRn will be 
respectively of the form 

V(t) = la {\p - 1)1 ^(S' V{S)' "" viq~1){s))-9{-> V(-)' ••" ^KV+f (*)]**, 

and 

v = W\g(., «(.), . . . , vto-%)) -<?(., «(.), . . . , »(»-!)(.)) + / ] . 

In par t icular , when |#(i , m , . . . , t / 9 ) | is bounded everywhere by a ^ - f u n c t i o n of 
t, we have existence theorems of the type of Theorem 1 or Theorem 3. 
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