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Semilinear Problems with Nonlinearities 
Depending Only on Derivatives 

MlCHAL FECKAN 

Abstract. The existence of solutions are studied for semilinear boundary value problems 
of ordinary differential equations where nonlinearities depend only on derivatives. 

1991 Mathematics Subject Classification: 34B15, 47H15, 47N20 

1 Introduction 

A. Canada and P. Drabek have studied recently in [2] the solvability of the problem 

u " + *(«') = /(*)• <€[0,1] (1.1) 

with Neumann or periodic boundary conditions. They have proved that if g is of 
class C1 and bounded, and if we write / = / + f with / the mean value of / , 
then for each / , there exists a unique / such that the problem (1.1) is solvable. 
When g is neither or class C 1 nor bounded, J. Mawhin in [4] has derived existence 
results to the problem (1.1) by using fixed point theorems. Extensions to certain 
higher-order equations are also given in [4]. 

The purpose of this note is to continue in that direction. In Section 2, we 
formulate an abstract version of the problem (1.1) and give existence results based 
on the well-known theorems of [3]. Certain boundary value problems are studied in 
Section 3. The solvability of the problem (1.1) with the Dirichlet, anti-periodic and 
mixed boundary conditions is shown for rather general classes of g. Higher-order 
equations are also investigated. 

2 Preliminary Results 

In this section, we derive an abstract version of boundary value problems men
tioned in Introduction based on a standard approach of [3]. Let X, Y, [/, Z be 
Banach spaces such that Y is compactly embedded into U. The norm on X is 
denoted by | • \x, similarly for the other spaces. Consider the equation 

LoMx = N(Mx) + h} heZ (2.1) 

where LY —» Z, MX—>Y are continuous linear Fredholm operators, N U —r Z 
is continuous. We put V = i m M and rewrite (2.1) in the form 

Lv = N(v) + ft, heZ,veV. (2.2) 
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So (2A) is solvable if and only if (2.2) is solvable, and if v is a solution of (2.2) 
then {w + XQ \ xo £ kerM} is a family of solutions of (2.1) with v = Mw. 

Lemma 2.1. The operator L/V V —> Z is a Fredholm operator of index 

indL/V — indL — codim imM . 

PROOF: By putting 

V0Vi = Y, V30kerLnV = V, V4ekerLnV1 = Vi, 

we have 
V3 0 V4 0 ker L n V 0 ker L n Vi = Y 

ker L n V 0 ker L n Vi = ker L . 

We know that L/V3 0 V4 is an isomorphism on imL. So 

codim im L/V = codim im L + dim V4 . 

Since 

dim V4 + dim ker L n V\ = dim Vi = codim V 
dim ker L f)V + dim ker L n Vi = dim ker L , 

we obtain 

dim V4 = codim im M — dim ker L n Vi = 
= codim im M + dim ker L n V — dim ker L . 

Summarizing we arrive at 

indL/V = dim ker L n V — codim imL/V = 
= dim ker LHV — codim im L — dim V4 = 
= dim ker LOV — codim im L — codim im M— 

—dim ker LC\V + dim ker L = 
= dim ker L — codim im L - codim im M = ind L — codim im M . 

The proof is finished. D 

Now we assume that the following condition holds 

dim ker L n V = 0 . '(H) 

Lemma 2.1 and condition (H) imply that codim imL/V = codim i m M — indL. 
Let Q Z —» imL/V, Q = 1 — P be continuous projections. 

T h e o r e m 2.2. IffOr any h G sraQ, £here is an Open bounded subset Q^ such that 
0 G Clfr C V anJ £he equation 

Lv = \(QN(v) + h), v£дӣ-h 
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has no solution for any A £ [0,1]. Then for any h £ imQ, there is a ft £ im (I— Q) 
such that (2.1) has a solution x with h = h+h, hence (2.1) has a family of solutions 
{x + xo | xo £ kerM}. 

P R O O F : By using the standard approach (see [3]), we first rewrite the equation 
Lv = X(QN(v) + ft) as v = XL~x(QN(v) + ft). Since L~lQN V -> Y is compact 
and 0 £ Q^, we have 

deg (l-\L-1(QN + h),QR,o)=deg(f,Q-h,0) = l, 

where deg is the Leray-Schauder degree. So there is a v £ O^ such that 

Lv = QN(v) + h = N(v) - PN(v) + ft . 

Consequently, we can take ft = —PN(v). The proof is finished. • 

Corol lary 2.3. Assume 

\N(v)\z/\v\y -+0 whenever V 3 v —> oo , 

then the conclusion of Theorem 2.2 holds. 

P R O O F : It is enough to take a sufficiently large ball for 0^. • 

Remark 2.4. If (H) does not hold and indL/V = indL — codim imM = 0, then 
a coincidence degree arguments of [3] could he applied to (2.2). 

3 Boundary Value Problems 

Consider the Dirichlet problem 

u" = g(t,u') + h(t) ( . 
t i (0 )= t i ( l ) = 0, l j 

where g £ C([0,1] x R,R), ft £ C([0,1],R). In the framework of Section 2, we put 

X = {x £ C2([0,1],R) | x(0) = x(l) = o} 

U = Z = C([0,1],R), Y = Cx([0,1],R) 
Lv = v', Mu = uf 

N(v) = (/(., v), ft = ft(.) 

V = i m M = {v £ Cx([0,1],R) | / v(s) ds = o\ . 
L o J 

It is clear that the condition (H) holds. 
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T h e o r e m 3.1. Let inf be either +oo or —oo; and let i/> [0, +oo) —> (0, +oo) be a 
+oo 

continuous nondecreasing mapping such that J -4^- = +oo. If we assume that 

0 vnuJ 
either 

limsup|g(£, w)| < +oo uniformly with respect to t, 
u-+ inf 

or 
lim g(t,u) = inf uniformly with respect to t 

u-* inf 

and then, in addition, we suppose 

limsup \g(t} U)\/I/J(\U\) < +oo uniformly with respect to t. 
u-+ inf 

Then (3A) has a solution for any h G C([0,1],R). 

P R O O F : We apply Theorem 2.2. It is clear that now imL/V = zT, so Q = 1 . For 
a fixed h G C([0,1],R), we take 

£lh = {v£V\ \v(0)\ < c , \v\v <K), 

where c, K are positive constants specified below. Consider the equation 

v' = \(g(t,v)+h(t)), \ €[0 ,1] 

t;(0) = Vo . * * ' 

The assumptions on # imply the existence of a continuous nondecreasing mapping 
<j) [0, +oo) -» (0, +oo) such that 

|j(í,«)|<^(H) v(i,«)e[o.i]xii 
+oo 

Since 
\\(g(t, v) + h(t)) | < \g(t, v)\ + \h\c < 4>(\v\) + \h\c , 

+ OO 
du anc* / d>(u)+\h\ - ~ +°°> w e n a v e ^y t n e Bihari lemma (see [1]) the existence of 

a nondecreasing mapping B [0,+oo) —> (0,+oo) such that any solution of (3.2) 
satisfies |t!|c < B(|ilo|). So for a fixed c > 0, we take K > B(c) in Q^. Let v G d£lh 
be a solution of the equation 

v' = \(g(t,v) + h(t)), AG [0,1] 

fv(s)ds = 0. ( 3 ' 3 ) 

0 

According to the choice of K, v G Sfi/j implies \v(0)\ = c. If r;(0) = c and g 
is bounded on [0,1] x [0,+oo), we have v(t) > 0 on [0,1] for a fixed, sufficiently 
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large c. The same holds when lim g(t, u) = -foo uniformly with respect to t. If 
ti—>-+oo 

t;(0) = — c, then similarly the assumptions on g imply v(t) < 0 on [0,1] for a fixed, 
sufficiently large c. Hence (3.3) has no solution on 8£lh. Consequently, Theorem 
2.2 can be applied. The proof is finished. • 

Similarly we have the following results. 

Theorem 3.2. Consider the problem 

u"=g(t,u')+h(t) 
u'(0) = u ( l ) = 0 , l ' 

where g G C([0,1] x E n , R n ) , h G C([0, l ] ,R n ) . Let i> [0,+oo) -»• (0,+00) be a 
+00 

continuous nondecreasing mapping such that J ^4^v = +00. / / 
0 

\g(t,u)\<jj(\u\) V ( t , « ) e [ f l , l ] x R " 

then (3.4) has a solution for any h £ C([0, l],tRn). 

P R O O F : We apply Theorem 2.2 by putting 

X = [x £ C2([0, l],(Rn) | x'(0) = x(l) = 0} 

U = Z = C([0, l],ffln), Y = Cx([0, l],IRn) 
Lv = t/, Mu = u' 

N{v)=g{.,v), h = h(-) 

V = i m M = {i; e C :([0, l],0Rn) | v(0) = o} . 

It is clear that the condition (H) holds as well as imL/V = Z, so Q = 1 For a 
fixed h £ C([0, l],[Rn), we take 

Qh = {v£V\ \v\v < K } , 

where K is a positive constant specified below. Consider the equation 

v' = \(9{t, v) + h(t)), v(0) = 0, A £ [0,1]. (3.5) 

By repeating the arguments to (3.2), we see that there is a constant K such that 
any solution v of (3.5) satisfies \v\y < K. So we take this constant K in Qh-
Consequently the equation v' = \(g(t,v) + h(t)) has no solution in 90^ . The 
proof is finished by Theorem 2.2. • 

Theorem 3.3. Consider the problem 

u" = g(t, u') + h(t)u'(0) = 0, u(0) = t i( l) , (3.6) 

where g £C([0,l]xRn,Bn), h £ C([0, l],IRn). If 

\g(t, ii)|/|tx| —> 0 whenever \u\ —> -foo 



32 M.Feckan 

umformly with respect to t E [0,1], then for any h E ([0, l] ,Rn) satisfying 

l 

(1 - s)Ji(s) ds = 0 , / < 

there is a h E fln suc/i £baL the problem (3.6) lias a solution u with /i = h + h, and 
hence a family of solutions c -f u where c E Rn «s arbitrary. 

PROOF: We apply Corollary 2.3 by putting 

X = f x E C2([0, l ] ,Rn) | a,'(0) = 0, x(0) = x ( l ) } 

U = Z = C([0, l ] ,R n ) , y = ^ ( [ 0 , l] ,Rn) 
Lt; = i/, Mu = i/' 

N(i,) = </(-, i,), fc = ft('). 

It is not hard to see that 

kerM = {x(t) is constant on [0,1]} 

V = i m M = \ve C f l([0,l],Rn) | v(0) = 0 , f v(s) ds = o\ 

i m L / V = f v E C([0, l] ,Rn) | / ( l - *)«(«) ds = o} . 
^ o -1 

So the condition (H) holds as well as Z = imL/V 0 Const, where Const is the 
space of constant functions on [0, 1]. So we take the projection Q Z —> Z such that 

im<2 = imL/V, im(H— Q) = Const. 

This projection is defined by 

l 

'l-s)y(s)ds. 

o 

i 

(Qy)(s)=y(s)-2j(\-s)y(S)ds 

Of course, the assumptions on g implies the condition on N of Corollary 2.3. The 
proof is finished. O 

T h e o r e m 3.4. If in addition to the assumptions of Theorem 3.2, respectively 
Theorem 3.3, the mapping g is locally Lipschitz continuous in the variable u. 
Then (3.4) has a unique solution for any h E C([0, 1],R). respectively the derived 
solution Of (3.6) in Theorem 3.3 is unique up to a constant additive. 

PROOF: By taking v = u' in the both equations (3.4) and (3.6), we arrive at the 
Cauchy problem 

vf = g(t)v) + h(t)) «(0) = 0 . 

Since g is locally Lipschitz continuous in u) the classical result (see [3]) about the 
local uniqueness of the Cauchy problem implies that any solution of the above 
Cauchy problem on [0, 1] is unique. The proof is finished. O 
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Theorem 3.5. Consider the problem 

u" = g(t,u') + h(t) , 
u'(0) = - t / ' ( l ) , u (0 ) = - t / ( l ) , [6'() 

where g G C([0, 1] x R n , R n ) , h G Cf([0, l ] ,Rn) . Let <•, •) be an inner product on 
Rn. If 

(g(t, w), u)/\u\ —>• ±oo whenever \u\ —r -f-oo 

uniformly with respect to t G [0, i ] ; £be72 for ant/ b G C([0, l],IRn) £be problem (3.7) 
bas a solution. 

PR OOF : We consider the positive sign in the assumption on </, the negative one 
can be treated similarly. We apply Theorem 2.2 by putting 

X = {x € C2([0, l],[Rn) | x'(0) = -* ' (1 ) , *(0) = -a- ( l )} 

[/ = Z = C([0, l],IRn), Y=C1([0, l] ,Rn) 
Lu = i/, Mti = u' 

N(v)=g(-,v), h = h() 
V = i m M = {v € Cx([0, l],IRn) 11>(0) = -«(1)} . 

The condition (H) holds as well as imL/V = Z, so Q = 1 Consider the equation 

t/ = A(0(*,t;) + fc(t)), A ^ [ 0 ^ ] ( oo) 
v(0) = - w ( l ) . l j 

The assumptions on g imply the existence of a constant K > 0 such that 

(g(t,v)yv)-(h(t),v)>0 

for any t G [0, 1] and \v\ > K. Hence (3.8) gives ^(\v(t)\2)' = (v'(t),v(t)) > 0 for 
any t G [0, 1] such that \v(t)\ > K. Consequently, if \v(t0)\ > K then \v(t)\ > K 
for any 1 > t > to, and \v(t)\ is increasing on [lo, 1]- We take 

Qh = {veV\ \v\v <K}. 

If v G d£lh solves (3.8), then there is a to G [0,1] such that |v(tfo)| = N, hence 
\v(0)\ = \v(\)\ > K and \v(t)\ is increasing on [0, 1], which contradicts to \v(0)\ = 
\v(\)\. So the equation (3.8) has no solution in d£lh- The proof is finished. • 

Finally we consider two three-order problems. 

Theorem 3.6. Consider the problem 

u'" = g(t,u") + h(t) 
u'(0) = u ' ( l ) = 0, u ( 0 ) = « ( l ) , { ' 

where g £ C([0, 1] x R",!Rn), h G C([0, l ) ,R n) . / / 

!<;(<,U)|/|M| —> 0 whenever \u\ —> +00 
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umformly with respect to t E [0,1], then for any h E C([0, l],lRn) satisfying 

l 

I s(\ - s)h(s) ds = 0 , 

o 

there is a h E Rn such that the problem (3.9) has a solution u with h = h + h, and 
hence a family of solutions c -\- u where c E lRn is arbitrary. 

PROOF: We apply Corollary 2.3 by putting 

X = [x E C3([0, l],IRn) | x'(Q) = x'(\) = 0, x(0) = x(\)} 

u = z = c([o, i],iRn), y = cx([o,i],iRn) 
Lv = i/, Mu = u" 

N(v)=g(-)v)1 h = h(-). 

It is clear that the condition (H) holds. Now we derive V = imM. If v E Y then 
l 

the problem u" = t>, uf(0) = u'(\) = 0 has a solution only if J v(s) ds = 0, and 
o 

t 3 

then u(t) = d+j f v(z) dz ds, where d is a constant. So such u satisfies u(0) = u(l) 
0 0 

if and only if 
1 s 1 

0 0 

Hence 

0 = / v(z)dzds= I (\ - s)v(s) ds , 

V = imM = {v eCl([0,\lDRn) | j (\ - s)v(s) ds = f v(s) ds = o ] . 

0 0 

Similarly we obtain 

l 

imL/V = [vEC([0 , l ] , lR n ) | f s(\ - s)v(s) ds = o j . 

o 

Consequently, Z = imL/V ® Const, where Const is again the space of constant 
functions on [0,1]. So we take the projection Q Z —> Z such that 

imQ = imL/V, im(tt— Q) = Const. 

This projection is defined by 

{Qy){s)=y{s)-Q J s{\-s)y{s)ds. 
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Of course, the assumptions on g implies the condition on N of Corollary 2.3. Since 
ker M = {x(t) is constant on [0, 1]}, the proof is finished. D 

Similarly we have 

T h e o r e m 3.7. Consider the problem 

u'" = g(t,u') + h(t) 
Ti'(0) = t i"(0)=tx"(l) = 0, (6W) 

wberegGC([0 , l ]x iR n , lR n ) , h G C([0, l],IRn). If 

\g(t, u) | / | t i | —>• 0 whenever \u\ —>• -foo 

uniformly with respect to t G [0, 1]; then for any h G C([0, l],(Rn) satisfying 

l 

/ h(s) ds = 0 , 

o 

there is a h G IRn such that the problem (3A0) has a solution u with h = h -f- h, 
and hence a family of solutions c -f- u where c G IRn 25 arbitrary. Moreover, if g is 
locally Lipschitz continuous in the variable u, then the derived solution u is unique 
up to a scalar additive. 

PROOF: We apply Corollary 2.3 by putting 

X = {x e C3([0, l],[Rn) | x'(0) = x"(0) = x"(l) = 0} 
U = Z = C7([0, l],!Rn), Y = C2([0, l],[Rn) 

Lv = t/;, Mi* = u' 
N(v)=g(.,v), h = h(-). 

The condition (H) holds, and 

V = i m M = {v € C2([0, l],[Rn) | «(0) = ^(0) = t /( l) = 0} 

i m L / V = {v G C([0, l],Hn) | / v(s) ds = o ) 

kerM = {x(t) is constant on [0, 1]} . 

So we take the projection Q defined by 

I 

(Qy)(s) = y(«) - / y(*)ds 
0 

such that 
im Q = im L/ V, im (tt — Q) = Const, 

where Const is the usual space. 



Of course, the as sumpt ions on g implies the condition on N of Coro l lary 2.3. 

Since ker M = \x(t) is constant on [0, 1]}, the first par t of the theorem is proved. 

T h e second one follows from the fact t h a t the function v — u' satisfies the Cauchy 

problem 

v" = g(t,v) + h(t), v(0) = v'(0) = 0 . 

T h e proof is finished. • 

R e m a r k 3 .8. Similarly as in [Jh p. 68], we can study higher-order equations. 

For instance, Theorem 3.1 is valid also for the problem 

ti(*) =g(t)U(k-V) + h(t) 

u « ) ( 0 ) = 0, 1 < j < k - 2, i / (*- 2 ) ( l ) = 0 , 

where g G C([0, 1] x IR,IR), h G C([0, l],tR) and k > 2 is an integer number. 
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