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Extremal problems about additive bases 

Georges Grekos 

Abstract: Let A C -No D e a n asymptotic basis of order 3. (That is, every sufficiently large 
integer is sum of three integers belonging to A.) We prove that for almost all (all but finitely 
many) a belonging to A, the set B — A \ {a} is an asymptotic basis of order at most 6. 
Several open problems are discussed. 

Résumé: Soit A un ensemble d' entiers naturels. Nous supposons que A est une base 
asymptotique d' ordre 3, c' est-à-dire que tout entier suffisamment grand est somme de 
trois entiers appartenant à A. Nous démontrons que, à un nombre fini d' exceptions près, 
tout élément a de A est tel que 1' ensemble B = A\ {a} soit une base asymptotique d' ordre 
inférieur ou égal à 6. L' article se termine par quelques problèmes ouverts. 
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Definitions and notations. 
All sets A, i ? , . . . in this article, are strictly increasing sequences of integers. Thus 
a set 

A = {a0 < ai < . . . } 

may contain a finite number of negative terms. 

The (equivalence) relation A ~ B means that the symetric difference AAB is 
finite. 

Let h be an integer, h > 2. We note hA the set of all sums of h, not necessarily 
distinct, elements of A. That is, 

hA = {x\ + . . . 4- Xh : Xj G / 4 , l < j < / i } . 

If there is an integer h such that hA ~ iV, then A is called a bas is . In other 
terms we call here "(additive) basis" what is usually called "asymptotic basis" in 
the literature. The smallest integer A: such that kA ~ N is called the order G(A) 
of the basis A. 

We discuss questions related to the following problem. 

Problem:. Let .4bea set such that hA ~ IN and let a e A. Put B = A \ {a}. Is 
B a basis? And, if this is the case, what can be said about its order G(B)? 

The following Lemma is very useful. 



88 Georges Grekos 

Lemma. Let k be a positive integer, n an integer, X a set of integers and F a 
subset of X. Then 

k(X + n) = kX + kn 

and 
k((X + n)\(F + n)) = k(X \ F) + kn. 

Furthemore, we have that kX ~ IN if and only if k(X + n) ~ IN. Also, (X + n) \ 
(F + n) is a basis of order k if and only if X \ F is a basis of order k. 

The proof is straightforward. 

A result for h = 3. 
In this section we prove a result for h = 3. The corresponding problem for h = 2 
was completely solved in [2]. The reader can find a more general context for this 
kind of problems in section 3. 

Theorem. Let A be a set such that 3 A ~ IN. Then, for all sufficiently large a 
belonging to A, the set B = A \ {a} verifies 62? ~ IN; that is, B is a basis and 
G(B) < 6. 

Remark:. Note that G(A) < 3. If G(A) = 2 we already know [2] that G(B) < 3 for 
all xx large enough. So the theorem proved here is useful when G(A) = 3. In any 
case, this theorem gives G(A) < G(B) < 6 for almost all a belonging to A. 

Proof of the theorem. 
STEP 1. In view of the Lemma in section 1, it is sufficient to prove the theorem 

under the assumption that an = 0. We assume in the sequel that 

A = {0 = a0 < ai < a2 < . . . } C INQ. 

As a € A will be large enough, the set B = A \ {a} contains 0 and satisfies 
kB C (k + \)B for any k. 

STEP 2. We note n 0 an integer greater or equal to 1, such that any integer 
n > no belongs to 3A . We also put rx = min(iV \ A). We shall prove that, for all 
a e A, 

(1) a > 3(n0 + r ! ) + 4 , 

the set B = A \ {a} satisfies 6H ^ IN. 
STEP 3. Note that 

(2) 3A = W U (a + 2B) U (2a + B)U {3a} 

and 3A — N so that 

(3) 3B U (a + 2B) U (2a + B)~IN. 
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Also 32? C 62?. It is a consequence of (1) that a - a\ > n0 . Therefore 

a - a\ = xi + x2 + xz , Xi 6 A, i = 1,2,3. 

But no X{ can be equal to a. So £t € S , t = 1,2,3, 

(4) a G 4.2? 

and a 4- 22? C 62?. In view of these remarks and of (3), in order to prove that 6B ^ 
W, it suffices to show that every sufficiently large n such that n = 2 a - f b , b G 2 ? , 
belongs to 62?. This is true if 2a G 52?. So we assume in the sequel that 

(5) 2a £ 52?. 

STEP 4. The condition (5) implies that 

(6) [a + l , 2 a - n 0 ] n 2 B = 0. 

For suppose that this set were not empty. Let x be an element of it. We would 
have a < x < 2a — no, so that no < 2a — x < a, which would give that 2a — x G 32? 
and 

2a = (2a - x) + x e W + 2B = 5B. 

Another consequence is that 

(7) [£,fl-!£]nfl = 0. 

For if f G B , then 2a = 4f G 41? C bB. If f < x < a - -f- and x G £ , then 2z 
would belong to the set in (6). 

STEP 5. There is an integer 

n r a — 1 a . 
z i e s n [ — , - [ . 

The reason is that a — 1 belongs to 32?, and so a — 1 — z\ + z<i + 23 with, say, 
z\ > z2 > 23 and Zi G -B, i = 1,2,3. 

STEP 6. We have that 

(9) ]a - y , a - 1] H B = 0. 

Because if x was an element of this set, then x + Z\ would belong to 2JB and verify 

n 0 a — 1 a 
a " T + "~3~~ < x " f 2 : - < a - 1 + 9 -

Easy consequences of (1) are the inequalities 

a 
a — \ + - <2a — n0 
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and 
no a — 1 

a + l < a - Y + - T - . 

Thus x + z\ would belong to 

2.2? n [a + 1 , 2a -no ] -

Or by step 4, this set is empty. 
STEP 7. We conclude that 

(10) .2?n[^,2a-no] = 0. 

This is a consequence of (7), (9), (6) and the observation that B is a subset of 22?. 
STEP 8. We shall prove that each integer n > 6a of the form n = 2a + b,b€B, 

with 2a £ 52?, belongs to 6B. Since [no, a — 1] C 32?, it suffices to prove that 

(11) [n-a+ l , n - n 0 ] n 3 2 ? ^ 0. 

For if x is an integer in the above set, then n = x + y where y = n - x G [n0, a - 1] C 
315 and therefore n G 32? F 3.2? = 6.1?. 

STEP 9. Let nx = n - -^y1 F 1. We easily verify, using (1), that n0 < 3a < 
ni < n — no. Each integer m in [ni ,n — no] satisfies at least one of the following 
conditions: 

- m € 3 5 , 

- m G 2B + a, 

- m G 2? F 2a. 

If m 6 3.2?, then we write n = m + y and as ni < m < n — no we verify that 
y = n-m>n-(n- n0) = n0 and y = n - m < n - n i = HT" - 1 < a. Therefore 
y G W and n = m F j / G SB + 3.2? = 62?. 

If m G 2J9 F a, then m - a G 2B and by step 5, m - a + z\ G 22? F 2? = 32?. We 
also have 

a — 1 ^ a 
n ~ a F l = n i - a H — <m — a + z\ <n — n$—a+- < n — n0 , 

o z 

so that (11) is true. It remains the case where all m in [ni ,n — n0] are of the form 
2a F b, b G B. We suppose that this is true in the next and final step. 

STEP 10. We recall that rx = min(J?V\-4) g .2?. We remark that 2aFr x belongs to 
3-Aj it is not equal to 3a nor is of the form 2a + b with b G B. By relation (2), 2aFTi 
is either of the form bi + b2 F b3 or of the form a F bi F b2 with b{ G B , i = 1,2,3. 
None of the two relations 2a F n = bi F b2 F b3 , 2a F n = a F bi F b2 is possible 
with all the bj's, i = 1,2,3 o r i = 1,2, strictly less than | . In view of the above 
facts and the relation (10), there is an integer bi G B D [2a — n 0 F 1,2a + r\]. Let 
mi = n — n0 — Ti. We verify that ni < m\ < n — n 0 : the non trivial inequality 
is equivalent to (1). As a consequence of the hypothesis formulated at the end of 
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the ninth step, we get that mi - 2a € B. Thus the number mi - 2a + bi belongs to 
2B C W and verify 

mi — 2a 4- h{ < n — no — r\ — 2a + 2a + r\ = n — no 

and 

mi - 2a -j- bi > n - no — Ti - 2a + 2a — n0 -f 1 = n - 2no — n + 1 > n — o-f 1, 

the latter inequality being a consequence of (1). Thus relation (11) is also valid in 
the this last case. The theorem is proved. 

A more general context-
Concerning the question raised in section 1, it is known ([3],[4],[6]) that if A verifies 
hA ~ .JV, then, except for at most h - 1 elements a belonging to A, the set B = 
A \ {a} is a basis and 

mm < ^ -
When h = 3, Nash [6] proved also that, if B = A \ {a} is a basis, then G(B) < 7. 

Let 

(12) X(J4) = m a x G ( . 4 \ { a } ) , 
a 6 A * 

where _4* is the set of a E _4 such that A \ {a} is a basis. Let also 

X(/i) = max x(A). 
A: hA^JN 

It was proved in [1] and [6] that X(2) = 4 and X(3) = 7, respectively. I also proved 
([3],[4]) that 

(13) y - K X ( / i ) , 

for any h > 2. As stated above, in [6] Nash proved that for any h>2, 

The problem of determining the order of magnitude of X(/i) remains open. 
Sequences used to prove inequality (13) are unions of arithmetic sequences of the 

same difference, to which some isolated integers are added (in the sense of union). 
For example, the sequence A = {3} U {8n : n 6 IN} U {8n + 1 : n € IN} verifies 
G(A) = 3 and, if B = A \ {3}, then G(B) = 7. 

Thus it seems that the difference G(B) — G(A), which is positive, may be large 
only for few elements a belonging to A. We ask the following question: What 
happens if we accept a finite number of exceptions? In more precise terms, this 
consists in taking in relation (12) the limit superior instead of the maximum. Let 

(14) s (4 ) = l imsupG( ,4 \{a} ) , 

and 
S(/i) = max s(A). 

A: hA^JN 
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Problem:. Evaluate S(/i). Is it true that S(/i) < X(/i) for all hi 
In this paper I proved that S(3) < 6 while X(3) = 7, and in [2] I proved that 

S(2) = 3 while it was known [1] that X(2) == 4. In general, it is only known that 

H I <S( / i ) < X ( / i ) . 

The first inequality is due to E.Hartter [5] (see also [7]). 
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