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A generalization of Pillai's arithmetical function 
involving regular convolutions 

László Tóth 

Abstract: We define a generalization of Pillai's arithmetical function P(n) = 5Zr=i(^n)» 
in terms of Narkiewicz's regular convolutions. We give arithmetic evaluations for our new 
generalization of Pillai's function and we establish asymptotic formulae for it in case of 
cross-convolutions, investigated in our previous papers. 
Key Words: Pillai's arithmetical function, Narkiewicz's regular convolution, arithmetic ex
pression, asymptotic formula 

Mathematics Subject Classification: 11A25, 11N37 

1. Introduction 
Pillai's ([8]) arithmetical function is defined by P(n) = 2i.=i( l '»n)> where (i,n) 
denotes the greatest common divisor (gcd) of i and n. In this paper we consider 
the following generalization of this function. Let A be a regular convolution of 
Narkiewicz-type ([7]) given by 

(f*A9)(n)= J2 f(d)9(n/d). 
deA(n) 

see also [6], [9], [16]. This is a common generalization of the Dirichlet convolution 
D and of the unitary convolution U. 

We recall that if A is a regular convolution, then the elements of the set A(n) 
are called the A-divisors of n and 

(i) for every prime power pa there exists a divisor t = t^(p a ) of a, called the 
type of pa with respect to A, such that A(plt) = { l , p t , p 2 t , ...,p1*} for every i e 
{0,1, . . . , a/t}, 

(ii) the function I, defined by I(n) = 1 for all n G N, N denoting the set of positive 
integers, has an inverse \±A with respect to the ^-convolution, \XA is multiplicative 
and for all prime powers pa one has 

10, 
if tA(pa)= a, 

»A(pa) = { n t . . 
otherwise. 
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For k G N, let Ak(n) = {d G N : dk G 4(71*)}. The 4.*-convolution is regular 
whenever the 4-convolution is regular, see [9], Theorem 3.1. Let (a, b)A,k denote the 
largest k-th power divisor of a which belongs to -4(6). Note that (a,b)o,k = (&,b)k 
is the greatest common k-th power divisor of a and b. 

Furthermore, let u G N, let F = {/i, / 2 , . . . , fu} be a set of polynomials with 
integral coefficients and let g be an arbitrary arithmetical function. We define the 
generalized Pillai function Pj?\tk g by 

(1) I^,*>)= £ 9Mfj(xj)),nk)A,k), 
Xj (mod n ) 

-<.7<t-

where (fj(xj)) stands for the gcd of / i (x i ) , . . . , fu(xu)> 
We use the notations Es, E and I for the functions Es(n) = ns,E(n) = E\(n) = 

n and I(n) = J30(n) = l , n G N, respectively. 

For .4 = D, the function P^D^Q = ^Fl<? w a s investigated by J. CHIDAMBARA-
SWAMY and R. SITARAMACHANDRARAO [2] and for A = D,k = u = l , / i ( x ) = x 

and g = Er we get the function Pr defined by K. ALLADI [1]. If A = D,u = 
1, / i (x) = x and g = E we obtain the function Pk introduced by H. G. KOPETZKY 
[5], which reduces to the function P of S. S. PILLAI [8] in case fc = 1. The 
unitary analogues P* (case A = U,u = k = \,f\(x) = x,g = Er) and P£ (case 
A = U,u = l,fi(x) = x,g = E) were introduced and investigated by us in [13], 
[15]. 

For A = D,k = l,g = E and for polynomials of first degree fj(x) = Sj + (x — 
l)dj, (sj,dj) = 1,1 < j < u the corresponding function was studied by us in [14]. 

We give arithmetical evaluations for our generalized Pillai function and we es
tablish asymptotic formulae for it in the following three cases: 

Case 1: g = Er, F a set of nonconstant polynomials with an additional condition 
(including the case when all the polynomials are irreducible), 

Case 2: g = Er with r > u and fj(x) = Sj + (x — l)dk, (sj,dk)k = 1,1 < j < u, 
Case 3: g = Eu and fj(x) = Sj 4- (x - l)d^,(sj,dk)k = 1,1 < j < u, 

assuming that A is a cross-convolution and using elementary arguments. 
The notion of cross-convolution, as a special regular convolution was intro

duced in our previous papers [20], [16], [17], [18] as follows. We say that .4 is 
a cross-convolution if for every prime p we have either tA(pa) = 1, i-e. A(pa) = 
{l,p,p2,...,pa} = D(pa) for every a G N or tA(pa) = a, i.e. A(pa) = { l ,p a } == 
U(pa) for every a G N. Let P and Q be the sets of the primes of the first and 
second kind of above, respectively, where P U Q = P is the set of all primes. For 
P = P and Q = 0 we have the Dirichlet convolution D and for P = 0 and Q = p 
we obtain the unitary convolution U. 

For z > 1 let 

P ^ P
 v f 7

 PeQ v F 7 

where (P(Z)(Q(Z) = C(^) is the Riemann zeta function. 



A generalization of Pillai's arithmetical function involving regular convolutions 205 

Furthermore, let (P) and (Q) denote the multiplicative semigroups generated by 
{1} U P and {1} U<3, respectively. Every n £ N can be written uniquely in the form 
n — npnQ, where np £ (P),nQ £ (Q). 

The results of this paper generalize and unify many known results concerning 
the special cases mentioned above. 

2. Arithmetical evaluations 

For a polynomial / with integral coefficients let Nf(n) denote the number of in-
congruent solutions (mod n) of the congruence f(x) = 0 (mod n). It is well-
known that the function Nj is multiplicative. Define the function Np by Np(n) = 
Nfx(n)Nf2(n)...Nfu(n) for each n £ N. It follows that the function Np is multi
plicative. 

The arithmetical evaluation of the function PpA k is given by 

Theorem 1. If A is a regular convolution, F = {/i, fi, •••, fu) is an abitrary set 
of polynomials with integral coefficients, k £ N and g is an arithmetical function, 
then 

(2) PFU)A^9 = ((9 o Ek) *Ah fiAk)(NF o Eh) *Ak Eku, 

where o denotes the ordinary composition of functions. 

If in addition g is multiplicative, then Pp^Atkt9 is multiplicative. 

Proof Grouping the terms of (1) according to the values ((fj(xj)),nk)A,k = dk and 
using that dk £ A((a, b)A,k) if and only if dk\a and dk £ A(b), see [9], Theorems 4.2 
and 4.3, we get 

P £ l * > ) = £ £ 9{dk)= £ 9(dk)Td, where 
deAk(n) Xj(mod nfc) deAk(n) 

l<j<u 
((fj(xj)),nk)Aik=dk 

Td= £ 1= Ek 
i j ( m o d nfc) Zj(mod n ) 

l < j < u l < j < w 
((fj(*i))>nk)A,k=dk ((fj(xj)/d

h),(n/d)h)Atk = l 

= ]C -S MAfc(e)= ]P * S ^Afc(e) 
x,(mod nfc) e^eA(((U(xj)/dk),(n/d)^)A>k) x ^ m o d nfc) ek\fi{xj)/d 

l < i < u - < i < u e€A f c (n /d) 

= £ /We) £ 1 = £ »M(e)(^erNF((de)k). 
e£Ak(n/d) Xj(mod nk) e€Ak(n/d) 

l< j<<-
/ i ( x J ) = 0 ( m o d (de)fc) 

Hence *r / , , ̂ kx 

d€A f c(n) e€Afc(n/d) 
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Denoting de = 6 G Ak(n), where d G ,4*(n),e G Ak(n/d) if and only if J G 
-4fc(n),ci G -4*(J), cf. [9], Theorem 2.1, we have 

SeAk(n) deAk(6) 

which finishes the proof of (2). It has been already noted that Np is multiplicative. 
If g is multiplicative, then using that regular convolutions preserve the multiplica-
tivity, we get that Pj?A%k,g *s multiplicative. 

Let <PA,S — VA *A Es. For s = ku and for Ak instead of A, 

(3) <pAk*u(n) = </>{£k(n) = (AM, *^fc £*u)(n) 

represents the number of ordered n-tuples (x\,X2, ...,xu) (mod nk) such that 
( ( . r ^ n * ) ^ * ) = 1. This generalized Euler function was introduced by P . HAUKKA-
NEN and P . J. M C C A R T H Y [4], see also [3]. Observe that 0£>,i = 0 is the Euler 
function. 

Corollary 1. (g = Er and g = Eu) 

PFUAXEr = PFUik,r = 0Afc,rfc(1VF o £ * ) *^fc jg?fctll 

4 1 ^ = ^i(^F°^)*A .^-
If/,•(*) = ^ + (* - l ) ^ , j = l ,2 , . . . ,n , then let P ^ 9 = ^ i b . , ( s . <*,-). where 

s = (5i,52,.. . ,5u) and d = (c?i,d2, •••,^«)- Taking into account that in this case 
Nf. (n) = (dk,n) if (d*, n) | s ; and 1V/. (n) = 0 otherwise, from Theorem 1 we get the 
following result. 

Corollary 2. For every A, g, k, n, s, d and n £ N we have 

I^t9(M,n) = n*u £ (( f foE ; f c)*^^J( e) e-^( e ,d1) f c(e,d2)*.. .(e,du) f c . 
eGAfc(n) 
(e,rfj)fck> 

!<.7<u 

Let 6 = d\d2...du. We have 

Corollary 3. If (sj,dj)k = 1, j = 1,2, ...,u, then for every n G N, 

- ^ ( M . " ) - 5 * * " £ ((0 ° I?*) M f c / ^ J(e)e~*" 
e€Afc(n) 
(e,<5) = l 

and if in addition g is a multiplicative arithmetical function, then 

p<!2.,(s,d.„).„- n ($?+(i- £ ) 'I' ^ ? ) . 
(M)= l 
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for every n € N, n > 1, where pa\\n means p a | n , p a + 1 J(n and t = tAk(p
a)-

Proof. Since (sj,dk)k = 1, we have (e,dj)k\sj if and only if (e,dj) = 1. Furthermore 
for.n = pa, with p J{dj,l < j < u and Ak(p

a) = {l,pl,p2t, ...,pa},t = ^ f c (p a ) we 
have 

a/t 

-3.8>><-.p°) = i>(pttt)*S(p°-")-
t = 0 

Using now that 0^^.(1) = 1 and 

for every i 6 {0,1, ...,a/t — 1}, we get 

a / t - l 

Pil,(s,d,pa)=^(p^)+ J2 »(P*tt)(P*tt)a"tt(l--53)-
i=-0 p 

If n = p a and p|dj for some j , 1 < jf < u, then P ^ u ^ ( s , d , p a ) = paku and the proof 
is complete. 

Corollary 4. (g = Er) Ifr^u, then 

^UM,n)=n- n (Pak(r-U) + (l - £*) ^ S f | ) • 
p ° | | n 

(P,<5) = 1 

and f/r = u, then 

pW>,d,n) = n*« p ( l + ( l - ^ l ) ? ) . 
(p.<$)=l 

/or every n £ N, n > 1, where t = £^fc(pa). 

Corollary 5. I//I z$ a cross-convoiution, then for every n € N, n > 1 ive Ziai/e 

ItUM,n)=n- n O+^-i)) n ( 2 - i ) -
p a | |n,peP V \ V J J p°\lnyPeQ v I7 / 

(p ,*) = l (P.*) = l 

For Sj = d, = 1, i.e. for fj(x) = x, 1 < j < u, let Pp^ i f c f P = PAJ^Q a n d w e S e t 

from Theorem 1 
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Corollary 6. For every regular convolution A and for every g,k,u we have 

P(AL = (9°Ek)*Ak4>(£k, 

PAtB^PAtr = Ekr*Ah4>{£. 

Remark 1. If A is a cross-convolution, then Ak = A for every k £ N, see [9], 
Theorem 3.3, [16], Remark 2 and from (3) we have 

Au) rp Ak) / ( i ) Aku) 
4>\;k = AM *^ - s ^ = 4>\;u = ^ ; f c u = 0 V 1 , 

^ 1 , - (» ° *) *A ttl P^lr = Erk *A *<# 

and it follows that 

(4) P{u) ~ Eu *A6{U) - P{k) - P{1) 

W rA,k%u ~ ^ku *A (PA}k - rA,u,k - rA,kuy\' 

Another representation of the function P{^k u ( s , d , . ) is given by 

Theorem 2. If (sj,dkj)k = 1, j = 1,2, ...,u, then 

P ^ , t t ( s > d ' - ) = »Ahh*Ah EkuTAk{;6), 

where h(n) = 1 or 0, according as n and (5 are coprime or not, and TA(n, 6) denotes 
the number of A-divisors of n which are prime to 6. 

Proof. We deduce from Corollary 3 

^.4UA:,tt(S'd'-) = (&ku *Afc VA,k)h *.4fc Eku = f^Akh *.4te Ekuh *.4fc Eku 

= V>Akh *Ak Eku(h *Ak I) = AMfcI<5 *.4fc EkuTAk(.,5). 

For other special choices of g we have for example the following results. 

Theorem 3. For every regular convolution A and for every n G N, 

(5) ] P aAiU(((xj)yn)A) = nuTA(n), 
Xj(mod n) 

l < j < t t 

(6) 5 ^ ^(((Xjjjfljyi) = (T/l,tt(n), 
x_,(mod n) 

l < j < i t 

(7) £ z^>-)=n«ri(1 + £^1). 
Xj (mod n) p|n 

l<i<t-
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where T^(n) and 0A,u(n) denote the number of A-divisors of n and the sum of u-th 
powers of A-divisors ofn, respectively, iO(n) is the number of distinct prime factors 
of n and z is a complex number. 

Proof. In case k = 1 using Corollary 6 we deduce 

PA*l,g = 9 *A 0^,1 = 9 *A VA *A Eu. 

Now for g — &A,U — I *A EU we get 

^ U , - M , U ~ I *A Eu *A HA *A EU — Eu *A Eu = EurA, 

which is relation (5), and for g = TA = I */i I we conclude 

Pjt}trA = I *A I *A VA*A Eu = I *A Eu = aAyUy 

giving (6). Finally, for k = 1, A = D and g(n) = z^(n) we have 

Pl£.9(n) = (9 * 0S)(n) = ntt ]J(l + ~ ) , 
P|n P 

where the last equality can be easily obtained using the multiplicativity of the 
involved functions. 

For u = 1 and z = 2 relation (7) is due to us, see [11]. The function ipu(n) = 
nu Up\n(l+-j^) is the generalized Dedekind function defined by D. SuRYANARAYANA 
[10]. 

Remark 2. If g is a real valued increasing function and A and B are two regular con
volutions such that A(n) C B(n) for every n G N, then Pp^A,k,g(n) — PF\B,k,g(n)i 

for every n 6 N. In particular, P£(n) < -PJi J. js(rc) - -°ifc(n) f° r every regular 
convolution A and for every n £ N. 

3. Asymptotic formulae 

We need the following lemmas. 

Lemma 1. 

' 0{xl~s), 0<s< 1, 

o(logx), 8 = 1, 

{0(1), s>l, 

(9) ]>Zn"S = 0(xl-°), s>l. 

(8) E n _ s = 

n<x 

n>x 
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Lemma 2. (cf. [20], Lemma 8) If A is a cross-convolution, s > 0 and a € N, then 

n<x v v ' 
(n,a)€(P) 

where }A(O) = 1 or />i(a) = o*„e(a) the sum of (-e)-th powers of the unitary 
divisors of a, according as the set Q is finite or Q is infinite, respectively for every 
0 <e < I. 

Case 1: We consider first the function PpA k r obtained for g = Er. 
Let / be a nonconstant polynomial with integral coefficients and let its decom

position into irreducible factors be / = cg\l or2 ...g%?. Define h(f) = maxi<j< m r j . 

Lemma 3. ([20], Lemma 6) For every set F of nonconstant polynomials and for 
every e > 0 we have 

NF(n) = 0(nu~h+£), 

where h = l/h(f_) + l / / i ( / 2 ) + ... + l / f t ( / u ) . 

Theorem 4. If A is a cross-convolution, F is an arbitrary set of nonconstant poly
nomials, k,u G N and 0 < r < h, then 

г<x n=l 

where R(x) ^xkuifh>r + \ and R(x) = x*u+i-fc(fc-r)+e ifh<r + \ for every 
0 < e < k(h - r ) . 

Proof. Using Corollary 1 and Lemma 2 with e = 0 and using that r (n) ^ 0 ( n e ) 
for every e > 0, where r ( n ) is the divisor function, 

£ P F , l f c » = £ .̂*r(d).VF(d
fc)c*« = E^.-r(d)^(dfc) 2 ^ 

n<x de—n<x d<x e^x/d 
(d,e)€(P) (e,d)$(p) 

= g^»NH^)(IS^©'"+,
+0((|)'V)) 

= f L L l V <t>A*r(d)NF(dk)4>(dQ) ( kuSr <t>AM(d)NF(dk)\ 
fcu-f-1-^ dku+ldo \ x 2s dku~£ 

d<x w \ d<x / 

= a*"*1 ^ </>A,fcr(d)AtF(d*)<MdQ) | 

fcu + 1 4 ^ dfcu+1dQ 

\ d>x J \ d<x I 
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using that <f>A,kr(d) < dkr for every d e N. Here the series of the main term is 
absolutely convergent, since its general term is 

/ _ _ ^ _ _ _ _ H _ X = / 1 \ 

V dkU+l J \d1+k(h~r)-e) ' 

applying Lemma 3 and choosing z < k(h - r). The first 0-term is 

using (9) with e < k(h - r). 
The second O-term is 

J ( , - f c ) + . / a \ / i \ 
Ly I X Z.^ ^ku-e/2-kr I ^ I X Z-, ^(/i~r)-£ I ' 

by Lemma 3, which is, using (8): 0 (x* u ) for k(/i - r) > 1, choosing e < k(h - r) - 1 
and 0(x* t t+1-*(*- r>+ e) for 0 < Jfc(/i - r) < 1 with e < k(h - r), and the proof is 
complete. 

гrre-
errør íerra 

Corollary 7. If A is a cross-convolution, F is an arbitrary set of nonconstant 
ducible polynomials, k,u G N and 0 < r < u, then (10) holds with the error „., 
R(x) = xku ifu > r + | andR(x) = £* r + 1 + £ i / u < r + ~ for every 0 < e < k(u-r). 

Proof. In case of irreducible polynomials f{ we have /i(/t) = 1, thus h = u and we 
apply Theorem 4. 

For .4 = D the result of Corollary 7 was proved in [2], Theorem 3.2. 

Case 2: Next we consider the function P£k r ( s , d,.) obtained for g = Er,r > u 

and fj(x) = Sj 4- (x - l)d*, where (sj,dk)k = 1,1 < j < u. 

Lemma 4. (see [12], Lemma 5) 

( 0(rc1~Mogx), 0 < 5 < 1, 

OOog2*), , = 1, 
0(1) , 5 > 1 . 

Theorem 5. If A is a cross-convolution, k,u G N, r > u and (sj,<i*)fc = 1,1 < j < 
u, then 

n<x 

where A is ozven by 

C(fc( r -n) + l)CQ(fcr + l) r-r / 1 V * T T / , 1 \ 

CP(fcr + l) 11 V P* r + 1 j I / V P* r + V X 

P\op v \So 
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(i2) n ( i-JrT+^1 i _ + i ^ 
peQ V P p*r+2 pk(r-u)+2 ^ pk(2r-u)+2 J ' 

(P,í)=l 

r b / , , %_ _. i 1 ^ ~A,r 1 

finite ),xku+1(r < u + £) . * 

Proof By Corollary 3 we have P_u) / J \ _ / _ 7 . „ _r. * J? — zr r _ 
' 1, J__ 4,* r ( s , d , •) = (-C^r *.4 AM.LS *_4 £-*:_ = &krU *.4 

kML5 *__ £?*_ = h*A bkrh, where /_ = Eku ^ j ^ N o w f r o m L e m m a 2 , for every 
0 < £ < 1, 

where 

E p S > d , П ) = __>(e) _[_ J*Г 

" ^ 1 e<x _<x/e 

•g««K(^(!Г*Ч(îГ^))) 
_̂ _____ . *(_) v - __£_/_____) í e_______g_\ 
fcr + 1 J z_ _*,+. + y - Z_ glT+T 

e<x y e<x / 

f(n,S)= Д ŕ 1 - - ) a n d lг(n)<n*u. 
nlтг ^ " / p\n 

(p,*)=-l 

Hence we obtain 

_ _ ^ 4 , * , r ( S . d . " ) - _ ( f c r + 1 ) 2 _ efcr+. + C Ҷ - 2.ЄІГ-+T 
n<x ч ' e = l \ e>ж 

+o xkr+e _г 
e<x 

fл(Se ) 
ßk(r — u)+є 

Here the series is absolutely convergent, since its general term is 0 ( l / n A : ( r ~ t i ) " f l ) , 
where r — u > 0. Let A be the sum of the series. The general term is multiplicative 
in e and using Euler's product formula we get (12) for A. 

The first O-term is 0(xku+1) by (9) and the second O-tem is for Q finite and 
choosing e = 0: 0(xkr) for k(r - u) > 1; 0 ( x f c r iogx) for k(r - u) = 1; ©(a;*7' • 

x._.„(r-_)+i) ___ 0(^-4-1) f o r k { r - u) < 1, applying (8). 

Furthermore, for <2 infinite the second O-term is using (11): 0(xkr) if k(r-u) > 1 
withe = 0; 0(xkr log2 x) ifk(r-u) = 1 wi the = 0; and if k(r-u) < 1 and selecting 
0 < e < 1 - k(r - u) it is 

oí^gï -^)580^1)' 
see [13], Lemma 2.2. 
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Corollary 8. (fj(x) = x, 1 < j < u,S = 1) / / A is a cross-convolution and k,u € 
N, r > u then 

£ i t i » = T ^ + 0(s(x)), 
fcr + 1 

n<x 

where 

0 = 

_ W(r - u) + l)ÇQ(kr + l) т Л _ _ 2 _ _ 1 

ţP(kr +1) Д l V P * Г + 1 -*-• 
1 1 

+ +2 p f c ( r - u ) + 2 p f c ( 2 r - u ) + 2 

and S(x) is defined in Theorem 5. 

For A = D this result is due in [2], Theorem 3.2. 
In case A = U, k = it = 1 the result of Corollary 8 is proved in [13], Theorem 

4.2. 

C a s e 3: Now we deal with the function P J ^ u ( s , d,.) obtained for g = Eu and 

/j(x) = Sj + (x - l ) ^ , ( s i f d*)* = 1,1 < j < u. ' 
We also need the following lemmas. 

Lemma 5. ([19]) If A is a cross-convolution and u,t £ N, then 

£ *Kn, *) = (-£-) 2 /(«,u)CQ(2^Xh)X (l06X + 2C " l + MU) + ait'U) 

(n,u) = l 

(13) - 2 / 3 ( ( < U ) Q ) - 2 ^ | | ) + o(al1/2(t,u)5(u)i/(x,g)), 

where C is Eulerys constant, 

/(«.«)- n ( i - J ) . * < » > = » a n ( i - £ ) . «<*.«>- £ ^ r . 
p|« X ^ 7 Pin V ^ 7 p|t ^ 

(p ,« )= l (p ,u )= l 

a(u) = a(u, 1) = _ ^ — - , /?(") = Z ^ p T T T ' 5 ( u ) = £ " T f 
p|u p|u d|u V 

CQ( 5 ) *5 the derivative of (Q(S), a*(t,u) is the sum of s-th powers of the unitary 
divisors of t which are prime to u and H(x,Q) = y/x (Q finite), y ^ l o g z (Q 
infinite). 
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Lemma 6. If A is a cross-convolution and u,t G N, then 

£ rA(n,t) = Fft'l")x(\ogx + 2C - 1 + 2a(uQ) + a(t,uQ) - 20(tQuQ) 

(n,u)Є(P) 

-2^^)+0(aU/2(t,uQ)S(uQ)H(x,Q)), 

where 

= (<t>(uQ)?f(t,uQ)t2

Q 

4>2(tQUQ) 

Proof. Apply (13) for uQ instead of u. 

Remark 3. For every cross-convolution A and every u , ( G N w e have 0 < FA(t,u) < 

1. 

Lemma 7. If A is a cross-convolution and u,t,b G N, then 

£ n»TA(n,t) = ^ " ^ ( logx + 2 C - ^ + 2 a ( u Q ) + a ( t , u Q ) 

(n,u)lf(P) 

-20{tQUQ) - 2 ^ y ) + 0 ( a l 1 / a ( t , t i Q ) 5 ( t t Q ) J 6 ( s , Q ) ) l 

where Jb(x,Q) — xby/x (Q finite), xb^/x\ogx (Q infinite). 

Proof. By partial summation from Lemma 6. 

Lemma 8. If A is a cross-convolution, t G N and s > 0, £/ien £/ie series 

0 0 

E LM(n)F^(č,n) y-> /i>j(n)F i4(t,n)logn 

n «+i ' Z-/ ns-fi ' 
n=l n=l 

(n,t) = l (n,í) = l 
uA(n)FA(t,n)(2a(nQ) -f a(t,nQ) - 20(nQtQ)) 

n s + l 
n=l £ 
n=l 

(n,t) = l 
are absolutely convergent. Let At(s),Bt(s) — -A[(s) (derivative with respect to s) 
and Ct(s) denote their sums. 

Proof. The absolute convergence follows at once by Remark 3 and by a(n) — 
O(logn), 
P(n) = 0(1) . 
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Theorem 6. If A is a cross-convolution, fc,u G N and (sj,d^)k -= 1,1 < j < wy 

£/ien 

s p">-d-n) - rab) (*(M (loe*+2C ~ ETT - 2 H ) 
n < x 

-B^fcu) 4- C^(fcu)) + 0(Jku(x, Q)), 

where As(ku),Bs(ku),Cs(ku) and Jku(x,Q) are defined in Lemma 8 and Lemma 
7, repectively. 

Proof. Using Theorem 2 and lemma 7 with 6 = fcu, u = d, t = <5 we get 

£ P Й > , d , n ) = £ мл(d) £ efcuтл(e,c5) = 
n < x d<x e < x / d 

(d,<5) = l (e.d)Є(P) 

Ş ^<rf> ( ( J + 1 ) ' Ы 2 ) ^ . ( t o e 5 + 2 C " І»TT + *«Ь) + «(* *,) 
<-<Z 

(d,ő)=l 

-2ß(dQ6Q) - 2 ^ | | ) +0(^: 1 / 2 (Ä,dQ)S(dQ)J f c t t ( , Q ) ) ) 

J г u + 1 

( Ы + 1)CQ(2) £ 
l d<x 

. \ ( d , i ) = l 

дл(d)Fд(í5,d) 
\ 

dfcu+1 
cQ(-)\ 

/ 

( l o g x + 2 C - » - 2 ^ 
V * « + - Cç(2)j 

E 
d<x 
(d,<5) 

uA(d)FA(6,d)\ogd 
Jfcu+1 

+ E 
/ i л ( d ) F д ( Ä , d ) ( 2 a ( d Q ) + a(<5,dQ) - 2ß(dQ6Q)) 

\ 

d<x 
(d,<5)=l 

tffcu+1 

\ 
+ 0 £ °-i/2(ö,dQ)S(dQ)Jкu£,Q) 

d<x 
ч(rf.í)=i / 

r / cu+l 

(Ы+DC^V^^^^-SVÏ-2!!) 

+° í1"^ E зi+т) -в.(*«)+c.(м+o (v ^ 
\ d > x / \ d > x 
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^(^^c^гľД)). 
where 7 = 0 if Q is finite and 7 = 1 if Q is infinite. Now using (8), the well-known 
estimate 

E-F-olЭт). •>•• - E ^ = ОД. •>'. 
_>a; V 7 n < x 

see [15], Proposition 7, the proof is complete. 

Remark 4- For fj(x) =x,l<j<uwe have (5 = 1, 

p - 1 
Ai(ku) = — TT^ rr R l 1 

Cp(Att+l) l lV 

- 1 

( p + l ) ( p * « + i - l ) 

_?i(A:u) = 

- , f j fc l i ) fcH*" + -) _ V (p-l)pfc"+Mogp / _ p - 1 
U

 ^ C P O + 1 ) p ^ ( p + l ) ( p ' = " + 1 - l ) 2 V ( p + l ) ( p f c u + 1 - l ) 

For i4 = D,_i = l,<J = l this result is due in [2], Theorem 3.L In case A = 
U,u— 1,(5 = 1 the result of Theorem 6 is proved in [15]. 
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