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On the Number of Maximal Theta Pairs in a Finite 
Group 

AU Reza Ashrafi 

Rasoul Soleimani 

Abstract: In [6], Bhattacharya and Mukherjee defined the notion of 0-pair for a maximal 
subgroup of a finite group. They proved that for any maximal subgroup M of a finite group 
G, there exists a #-pair related to M. In [11], Zhao improved this result. He proved that for 
any maximal subgroup M of a finite group G, there exists a normal maximal 0-pair related 
to M. 

In this paper we introduce the notion of n#-maximal and primitive n#-maximal group. We 
show that for n = 1,2, G is n^-maximal if and only if G is primitive n#-maximal. Also, 
we characterize the 1 ̂ -maximal group and prove some results about 20-maximal groups. 
Finally, we introduce the notion of n#-pair group and prove that for all n ^ 2,3, there 
exists n#-pair groups and for n = 2,3 there is no n^-pair groups. 
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1. Introduction 
In this paper all groups considered are assumed to be finite groups. For convenience 
we denote M < G to indicate that M is a maximal subgroup of a group G. Also, 
MQ denotes the core of M in G and $(G) is the Frattini subgroup of the group G. 

In [6], Mukherjee and Bhattacharya introduced the concept of #-pairs associated 
to maximal subgroups of a group, and used this concept to investigate the structure 
of some groups. In [2], Beidlemen and Smith generalized the concept to the universe 
of infinite groups. The investigation on 0-pairs are continued in [1], [2], [7], [10], 
[11], [12], [13] and [14]. 

Let us recall the definition of #-pair which is introduced by Mukherjee and Bhat
tacharya in [6]. 

Definition 1 [6]. Given a maximal subgroup M of a group G, a #-pair of M is any 
pair (A, B) of subgroups satisfying the following conditions: 
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(a) B < G, B <A. 
(b) <M,A>=G a n d B <M. 
(c) | has no proper normál subgroup of ^. 

In addition, if A <3 G, then {A,B) is called a normál #-pair. A #-pair (A, B) is 
said to be maximal if there is no #-pair (C, D) such that A < C. The nonempty 
set of all 0-pairs of M in G is denoted by 9(M) and 6{G) = U M < G ^ ( M ) * S i m " 
ilarly, Omax(M) denotes the set of all maximal 0-pairs of M in G and Omax{.G) — 
\JM<G°rnax(M). 

Definition 2. A group G is called n#-maximal if \0max(G)\ = n. Also, we say that 
G is primitive nfl-maximal, if Af < G and N C $(G) implies that | # m a ; r ( G ) | = 
|*ma«(^)l = n. 

In this páper, all notations are standard and taken mainly from [3], [4], [6] and 
[9]. 

2. Groups with exactly n Maximal 0-pairs, n =1,2 
In this section we obtain the number of maximal #-pairs of some finite groups 
and prove that for any positive integer n, there exists a finite group G such that 
\@max(G)\ = n. To do this, suppose G is a finite group and TT(G) denotes the set of 
all prime factors of \G\. In the following simple lemma, we obtain the number of 
maximal #-pairs in a finite nilpotent group. 

Lemma 1. Let G be a nilpotent group with exactly n maximal subgroup. Then G 
is a primitive n#-maximal group. 

Proof. We first show that if M is a maximal subgroup of G, then 0max(M) = 
{(G, M)}. To do this, suppose M is a maximal subgroup of G, then || has a prime 
order and so (G, M) G 9{M). If (A, B) is another maximal 0-pair of M in G, then 
A = G and so (A, J3) is a normál maximal 0-pair. Now, by Theorem 2.5 of [11], B = 
MQ = M and 6max(M) = {(G, M)} . Next, we assume that G is a nilpotent group 
with exactly n maximal subgroup, Mi, M 2 , • • • , M n . Therefore, for all i, 1 < i < n, 
Omax(Mi) = {(G,Mi)}. This shows that emax{G) = {(G,M ť ) | l < i < n} and G 
is a n#-maximal group. We now assume that N < $(G) is a normál subgroup of 
G. Set, S = {M\M < G} and T = { $ | $ < - f } . Therefore, the map from 5 
to T that sends M to ^ is easily seen to be a one-to-one correspondence. Thus, 
\@max{-jšf)\ = n and the lemma is proved, o 

Corollary. For all positive integer n, there exist a primitive n0-maximal group. 

Proof. Let G be a cyclic group with |7r(G)| = n. Then G has exactly n maximal 
subgroup and by Lemma 1, G is a primitive n0-maximal group. o 

Lemma 2. Let G be a finite group and iV be a normál subgroup of G. Then 
\0max(jjr)\ < \9max(G)\. 

Proof. By Lemma 2.1 of [6], the map r : 0max(~) —> 0max(G) that sends (~, ~) 
to (C, D) is well-defined. Now, it is easy to see that the map r is one-to-one. o 
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Remark 1. In the definition of primitive nc?-maximal group, if we omit the condition 
N < $(G) then there is no primitive n0-maximal group, for n > 1. To see this, 
we assume that G is an arbitrary n#-maximal group, for n > 1. By Theorem 2.3 
of [11] there is a normal maximal #-pair (A, MG) of M, in which M is a maximal 
subgroup. Consider ~, then we can see that the map r, in the proof of Lemma 2, 
is not onto. This shows that G is not primitive, o 

Remark 2. Let G be a finite group. G is l#-maxirnal if and only if G is primitive 
l#-maximal. To see this, it is enough to show that every 10-maximal group is 
primitive. Suppose IV <J G, then by Lemma 2, | 0 m a i ( ^ ) | < \0max(G)\ = 1. Thus, 
\0max(jj)\ = 1, proving the result, o 

In [11], Zhao proved that if M is a maximal subgroup of G and (S, T) is a normal 
0-pair of M, then M has a normal maximal #-pair (A, B) such that (S, T) < (A, B) 
and ~ = ~. Furthermore, he proved that if M < -G and (-4,2?) is a normal 
maximal #-pair of 8(M), then B = MG- We use these results to prove the following 
theorem: 

Theorem 1. G is l$-maximal if and only if -——JT is a simple group. 

Proof. Suppose G is 10-maximal, say 9max(G) = {(G,D)}. Suppose C ^ G. Then 
there exists a maximal subgroup M of G such that G C M. Since 0max(M) ^ 0, 
hence 0max(M) = {(C, D)}. This implies that G = < M, G > = M, a contradiction. 
Thus C = G and (C, D) is a normal maximal #-pair. Now, by the mentioned result 
of Zhao, D = MG- If K is a maximal subgroup of G, then by assumption KG = MG 
and so D = M G = $(G). This shows that - ^ y is a simple group. 

Conversely, suppose -—fcr is a simple group and (C,D) € 0max(G) is a maximal 
0-pair. Since ^£-T is simple, hence for any maximal subgroup K of G, (G,$(G)) 
is a normal maximal #-pair of K. Therefore, C = G and D < $(G). Now, by 
the above result of Zhao, for any maximal subgroup K of G, D = KG- Therefore, 
(C-D) = (G, $(G)), proving the theorem, o 

Theorem 2. G is l#-maximal if and only if there exists a maximal subgroup M of 
G such that 6max(M) = 0max(G). 

Proof. Suppose M is a maximal subgroup of G such that 0max(M) = 0max(G) and 
|#maa;(G)j > 1. Let (A ,Mc) be a normal maximal 0-pair of G associated to M. If 
A^G then ^ contains a normal maximal #-pair ( § , ^f-) associated to a maximal 
subgroup ^ of § . By Lemma 2.1 of [6], (R,TQ) is a normal maximal 0-pair of G 
and so (R,T'G) G c?macc(M). But, A < i t and (A,MG) G 0max(M), a contradiction. 
Now for any maxiaml subgroup K of G, KG = MG and so $(G) = M G - This shows 
that q—^j is a simple group, which is a contradiction. Therefore, G is a l#-maximal 
group. The converse is obvious, o 

Lemma 3. If (C,D) e 6(M), then for all g e G, (C9,D) <E 0(M9). 

Proof Since, D < G, D < C and C & M, we have D < C9 and C9 £ M9. Assume 
that "jy properly contains a non-trivial normal subgroup J of ^ . Then we have, 
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Z - T° __ (T]9~
lD r (C^^D _ C 

D ~ D ~ VD^ L l D / D' 

But, (C,D) G 0(M), a contradiction. Therefore, (C9,D) G 0(M*) and the 
lemma is proved, o 

Coroilary. Let M be a maximal subgroup of the group G. Then, for all g G G, 
|0(M)| = \0(M')\. 

Proof. By Lemma 3, the map r : 0(M) —> 0(M5) that sends (C,D) to {C9,D) is 
well-defmed. Now, it is easy to see that the map r is a one-to-one correspondence. 
o 

In what follows, we investigate the structure of 29- maximal and primitive 29-
maximal groups. 

Lemma 4. G is 20-maximal if and only if G is primitive 2#-maximal. 

Proof. Suppose G is a 20-rnaximal group and N is a normál subgroup of G such 

that TV < $(G). By Lemma 2, \9max{jr)\ < 2- If \0max(%)\ = 1 then by Theorem 
1» $ffe] i s simple. But, A/" C $(G) and so * ( $ ) = ^ ^ , this implies that ^y is 

a simple group. Therefore, G is 10-maximal, which is a contradiction. o 

Lemma 5. Let G be a 2<9-maximal group and Omax (G) = {(A,B),(C,D)}. Then 
the following statements hold: 

(a) A < G and C < G. 
(b) A = G or G = G. 
(c) |{7b | T < -G}| = 2. 

Froo/. We can assume that (A, B) is a normál maximal 0-pair. Suppose C is not 
normál in G and g G G - NQ{C). Then (C9,D) is a maximal 0~pair diíferent 
from (.4,13) and (C,D), which is a contradiction. Next, we assume that A / 
G and C # G. Suppose that ( § , £ ) G 0mflíB(§) and ( g , £ ) G 0m a a ; (g) , then 
( i ? , r ) , ( í / , F ) e emax(G). Since ^ < R, (A,B) = (U,V) and so (C,D) = ( f l , r ) . 
Therefore, C < U — A < R = C, a, contradiction. Finally, by Theorem 2, there 
are two maximal subgroups M and L such that (A,B) G í m o i ( ^ ) and (C,D) G 
^max(^>), so by part (a), B = MG and D = LQ. We now assume that if is 
another maximal subgroup of G, then #m ax(^0 contains (-4, 1?) or (C,D). Thus, 
i ť G = MG or KG = LG and so m = | {r G | T < -G}| < 2. Suppose m = 1 
then $(G) = MG = LQ> li A ^ G then C = G and -—- is a simple group, a 
contradiction. If 4 = G then ( 4 , £ ) = (G,MG) and (C,Z?) = ( G , L G ) and so 
(4, B) — (C,D), which is a contradiction. Therefore, m = 2, as desired. o 

Theorem 3. Suppose G satisfies the following conditions, 
a) | { M G | M < - G } | = 2, 
b) ^ T O is a direct product of two simple groups. 

Then G is 2#-maximal. 

Proof. By condition (a) and Theorem 1, $j^ is not simple. Hence we can assume 

that ^y = ^y x ^ y , in which $ ^ j and $TGy are two non-trivial simple 
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subgroups of -^G)- ®y condition (a) there are two maximal subgroups M and L 
such that MG ^ ^G and $(G) = MG H LG . We now assume that T is a maximal 
subgroup of G such that K C TG. So, TG = LG or MG . Suppose K C MG and 
K 2 LG , then G = KL, P £ MG , (K ,#(G)) G 0(L) and (P,$(G)) G 0(M). Let 
(U, LG) be a normal maximal #-pair of L such that (K, $(G)) < (U, LG ) . We can see 
that U = G. Using similar argument as in above, if (V, MG) is a normal maximal 0-
pair of M such that (P, $(G)) < (V, M G ) , then V = G. If (G, D) is another maximal 
0- pair of G then there exists a maximal subgroup T such that (C, D) G 0(F), so 
TG = LG or TG = M G . Suppose that TG = LG , then (G,LG),{C,D) G 0(T) 
and since C ^ G so (C,D) < (G,LG), which is a contradiction. Therefore G is 
20-maximal.o 

Corollary. If - ^ y is a direct product of two simple groups with co-prime orders, 
then G is 20-maximal. 

Proof. By Theorem 3, it is enough to show that |{MG | M < -G}| = 2. To do this, 
we prove that if G = A x H, where A and B are normal simple subgroups of G with 
co-prime orders, then G has exactly four normal subgroups. Suppose N is a normal 
subgroup of G different from A and B. We can assume that Nr\A = Nf)B = l 
and so A •= ^ = H, a contradiction. Therefore, \{XG \ X < -G}\ = 2 and the proof 
is complete, o. 

3. Groups with exactly n 0-pair 
In this section we introduce the notion of n#-pair group and prove that there is 
no 20- and 30-pair group. Finally, we construct a groups with exactly n #-pairs, 
for n ^ 2,3. To do this, we need the structure of groups with exactly one or 
two maximal subgroups. It is well known that if a finite group G has exactly one 
maximal subgroup, then \G\ is divisible by exactly one prime number and G is 
cyclic. It has been proved [5] that if G has exactly two maximal subgroups then \G\ 
is indeed divisible by two primes and G is cyclic. Throughout this section m(G) 
denotes the number of maximal subgroups of G. 

Definition 3. A group G is called n#-pair, if and only if \0(G)\ = n. 

Lemma 6. A group G is l#-pair if and only if G is a cyclic group of prime power 
order. 

Proof. Suppose G is l#-pair. Then by Theorem 1, ^ ^ y is a simple group and 
0(G) = {(G,$(G))}. Suppose m(G) > 1. Then $(G) is not maximal in G and for 
any maximal subgroup M of G, (M, <I>(G)) is a 0-pair of L, in which L is a maximal 
subgroup of G distinct from M, a contradiction. This shows that m(G) = 1 and so 
G is a cyclic group of prime power order, o 

Lemma 7. If there exists a maximal subgroup M of G such that 0(M) = 0(G), 
then G is l#-pair. 

Proof. By Theorem 2, G is 10-maximal and so ^(U) is a simple group. If m(G) > 1 

then (M,$(G)) G 0(L) and (L,$(G)) G 0(M), f° r ^ o distinct maximal subgroups 
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M and L of G, which is a contradiction. Therefore, ra(G) = 1 and by Lemma 6, G 
is 10-pair. o 

Lemma 8. There is no n#-pair cyclic group of order p[l -pi? • • -pn
n, p\ < pi < • • • < 

pn, in which n > 1. 

Proof Suppose {M], M2 , • • • , M n } is the set of ali maximal subgroups of G. Then 
(G,Mi), 1 < i < n, are n maximal #-pairs for G and so G has at least n #-pair. 
Assume that M is a maximal subgroup of index p\, A is a maximal subgroup of M 
of index p2 and L is a maximal subgroup of G of index p2. Then (M, A) G #(L), a 
contradiction, o 

Theorem 4. There is no 20-pair group. 

Proof Let G be a 20-pair group. By Lemma 7, there is no maximal subgroup M 
of G such that 6(M) = 0(G) and so G is 20-maximal. Thus, \{XG | X < -G}\ - 2. 
Suppose that (C, LG) and (G, MG) are two distinct maximal #-pairs of G associated 
to maximal subgroups L and M, respectively. We claim that G has exactly two 
maximal subgroups. To do this, we assume that T is a maximal subgroup of G 
distinct from M and L.ltC^G then 9(G) - LG and (L, $(G)) G 0(T), which is 
a contradiction. We now assume that C = G, then -~- and j ^ - are simple groups. 
Therefore, TG = LG or FG = M G . Suppose FG = G L G then (L ,L G ) G 0(F), a 
contradiction. Also, if TG = M G then (M, MG) G 6(T) and so MG = LG. This 
implies that ^ ^ y is a simple group, which is a contradiction. Therefore, G has 
exactly two maximal subgroups and by a theorem of Khazal, mentioned above, |G| 
is indeed divisible by two primes. Now by Lemma 8, the proof is complete, o 

Lemma 9. Let G be a finite group such that all of maximal 0-pairs of G are normal 
and {MG \M <-G} = {LlG, • • • , L r G } . Then emax(G) = 9max(L\)U' • -U0max(Lr). 

Proof. Suppose (C,D) is an arbitrary maximal 0-pair of G. Then D = LiG, for 
some 1 < % < r. If C C Li then C C D, a contradiction. Thus (C,D) G 6(L{). 
Now we assume that (E, F) is a maximal 0-pair of 0(L;) such that (G, D) < (E, F). 
Therefore, G < E, D = F, % < % and % < g . This shows that (G,L>) is a 
maximal #-pair of 6(Li) and the proof is complete, o 

Theorem 5. There is no 3#-pair group. 

Proof. Let G be a 3#-pair group. By Lemma 7, there is no maximal subgroup M 
of G such that 6(M) — 0(G). Our main proof will consider a number of cases. 

Case 1. There are two maximal subgroups M and L of G such that \0(M)\ = 2 
and \0(L)\ = 1. Assume that (B,MG),(C,D) G 6(M) and (A,LG) G 0(L). We 
can see that C < G and C ?- G. We claim that G has at least three maximal 
subgroups. By lemma 6, G has at least two maximal subgroups. Assume that G 
has exactly two maximal subgroups, say M and L. Thus, by a theorem of Khazal, 
mentioned above, G is cyclic and so (A, LG) = (G, L), (B, MG) = (G, M). Since £ 
is a simple group, we have (M,$(G)) G 0(L), a contradiction. Therefore G has at 
least three maximal subgroups. We now see that MG ^ LG. Thus, for any maximal 
subgroup X of G, KG = LG or XG < MG . Suppose A = G. If L is non-normal 



On the Number of Maximal Theta Pairs in a Finite Group 11 

and g e G - NG(L), then (L9,LG) G 6(L), which is impossible. So L < G and we 
can see that (MG,L n MG) G 6(L), a contradiction. Thus A / G and so A < MG . 
Also, C <LG and hence C < LG < A < MG , which is ? contradiction. 

Case 2. G zs 30-maximal and there are maximal subgroups M. L and K of G 
such that (A,LG) G 0(L), (J3,KG) € 6>(K) and (C,MG) G 0(M). By Lemma 9 
and Case 1, |{AIG | M < -G}\ = 3. We claim that one of the subgroups A, B and 
C is equal to G and the other two are proper. To do this, suppose A = C = G. 
Then M,L < G and (L,M f) L) G 0(M), which is impossible. Therefore, we can 
assume that A ^ G, H ?- G and |0(§) | = |0(§) | = 1. Suppose f and f are the 
unique maximal subgroups of ^ and ^ , respectively Thus, ( 7 , ^ ) G 0(^f) and 
(§> I ) G fl(f)- T h i s s h o w s t h a t (G'R) a n d (G>5) a r e ^-pairs of G and so It = 5. 
We can assume that M < G and A, B < M. Now (7^ , TJ), (7—, T ~ ) € # ( ^ ) 
and |#7nax(/7-)| < 3. Therefore, |0maz(jr~)| = 3 and there exists another 0-pair 

(T1"' F1") ^ @(T~)' ^ *s e a s y t o s e e ^ a t ^G C KG. Using similar argument as in 
above, KG C LG and so LG = KG , which is a contradiction, o 

Theorem 6. There exists a group with exactly n 0-pair, for n / 2,3. 

Proof For n = 1, a cyclic group of prime power order has exactly one 0-pair. 
Suppose n > 4 and G = Zpn^. Then G has exactly two maximal subgroups M 
and IV of orders pn and p n _ 1g , respectively. Suppose A^ and 2?», 0 < i < n, are 
subgroups of G of order pl and p*g. Now it is easy to see that 0(M) = {(Bi, A{) | 0 < 
i < n} and #(jV) = {(An,-4 n- i ) , (Bn, Hn_i)}. Therefore G has exactly n-f 3, c?-pair, 
proving the result.o 

We conclude this paper with the following open question: 
Question: Is there a non-abelian finite group with exactly n 0-pairs, for a given 
positive integer n ^ 2,3? 
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