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Abstract: We describe the structure of the group of linear automorphisms of any ternary 
cubic form. 
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1. Introduction 
Let F = F(X\,..., Xn) be a form of degree r in n variables over a field K. We say 
that a G Aut(Kn) is an automorphism of F (or linear preserver of F) if 

F(a(X1,...,Xn)) = F(X1,...,Xn). 

The set AutKF of all automorphisms of F forms a group, which we call the auto
morphism group of F. It is known that Aut KF is finite when F is nonsingular and 
r > 3 (see [6]). So it is natural to ask after Suzuki [11] about the structure or at 
least the order of Aut#F . Many authors have examined this problem. Unfortu
nately there are no universal methods of solving it, so the authors usually confine 
their considerations to certain families of forms. O'Ryan and Shapiro [5] explored 
trace forms of degree d of central simple algebras over fields of characteristic not 
dividing d\, Guralnick [3] and Shapiro [8] described linear preservers of trace forms 
of matrix algebras over fields of positive characteristic, the authors of this paper 
(together with Sladek) observed forms over ordered fields, Wesolowski [12] found 
linear preservers of trace forms of etale algebras, whereas Berchenko and Olver [1] 
were mainly interested in binaries over R and C. 

In the literature one can find many results on isomorphisms of various kinds of 
algebraic sets. Any form determines in a natural way a projective algebraic set and 
any linear preserver of this form determines an automorphism of that projective 
algebraic set. It suggests an additional way of examination of linear preserves. In 
the paper we apply the results on automorphism groups of elliptic curves to obtain 
the structure of groups of linear preserves of ternary cubics. 
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In the sequel we assume that all fields are of characteristic 0 (though some of 
our results are true for fields of characteristic ^ 2,3) . Since we have the natural 
injection AutKF <—» A u t ^ F eg) FT, we also assume that K is algebraically closed. 

In [4] Orlik and Solomon cite the following result which is due to Bott and Tate: 
For a given nonsingular form F of degree r > 3 in n variables over K the order of 
the group AutKF is bounded by a function of r and n. 

For fixed r and n let us define 

g(r,n) := max{|Aut/cP |; K - field, F G Fn,r(K), F - nonsingular}, 

where Fnjr(K) denotes the space of all forms of degree r in n variables over a field 
K. By the result of Bott and Tate we have g(r,n) < oo for r > 3, n G N. Berchenko 
and Olver [1] describe automorphisms of binary forms. From their paper it follows 
that g(r,2) = (6r - 12)r. Our investigation gives g(3,3) = 162. 

2. Some information about elliptic curves 

Suppose F = F(X, Y, Z) is a nonsingular ternary cubic form. Then 

EF(K) := {(X : Y : Z) G P2 : F(X, Y, Z) = 0} 

is a projective elliptic curve which with an appriopate operation + and distinguished 
element O is an abelian group. By the Nagell's algorithm the equation of the above 
curve can be reduced to the Weierstrass form 

E(a, b) : Y2Z = K3 + aXZ2 + bZ3. 

Elliptic curves over an algebraically closed field are classified by so called j-invariant. 
For E(a,b) we have 

• - 1 7 2 8 ( 4 Q 3 ) 

; ~ 4a3 + 2762" 

In the literature the group AutKEF of automorphisms of an elliptic curve is well 
described. Since we want to find the connection between AutKEF and A u t ^ F it 
make sense to recall necessary information on AutKEF. 

Theorem 1. (see [8] p. 103) Let AutK(EF,0) be the group of automorphisms of an 
elliptic curve EF fixing the zero element (that is, the group of all isogenics). Then 

(fi2(K), if j(EF)^ 0,1728 
AutK(EF,0) 2 I fi6(K) , if j(EF) = 0 

{li4(K), if j(EF) = 1728 

where fin(K) stands for the group of n—th roots of unity. 

Let tQ : EF(K) -» EF(K) denote the translation map: tQ(P) = P + Q for 
P,Qe EF(K) and let EF(K) := {tQ \ Q G EF(K)}. Of course, the group EF(K) 
is isomorphic with EF(K) and actually 

Aut/v(Ft>) = EF(K) X3 Aut*r (£ F , 0 ) 
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with the natural action of Aut K(EF,0) on EF(K) (see [8] p. 75). Let Aut°K(EF) 
and EF(K) denote the subgroups of AutK(EF) and EF(K), respectively, consisting 
of all automorphisms which map the set of points of inflections to itself. Then 

Aut°K(EF) = E°F(K) X AutK(EF,0). 

Since an elliptic curve (over algebraically closed field) has nine points of inflection 
(together with O) and they form a subgroup of EF(K) isomorphic with fi3(K)2 we 
get the following. 

Proposition 2. If F is a nonsingular ternary cubic form then 

Aut°K(EF) = ii3(K)2 X] AutK(EFlO). 

Thus 

( / i3(K)2 XI ii2(K) , if j(EF) ?- 0,1728 
Aut°K(EF) £ I / i3(K)2 X u6(K) , if j(EF) = 0 

[ fi3(K)2 X3 fi4(K) , if j(EF) = 1728 

Corollary 3. 
( 1 8 , if j{EF)jL 0,1728 

\Aut°K(EF)\= I 54 , if j(EF)=0 
[ 3 6 , if j(EF) = 1728 

3o The structure of the automorphism group 

Looking for the automorphism group of the fixed form F it is enough to consider 
instead of F any form isomorphic with F. We begin this section with the theorem 
due to H. Weber which will turn out to be very useful for us. 

Theorem 4. (see [13] p. 401) Let F(X,Y,Z) be a nonsingular cubic form over an 
algebraically closed field K. Then F is equivalen1 to the form 

Fd (X, y, Z) = X3 + Y3 + Z3 - MXYZ, deK 

by a linear change of variables. 

Remark 5. Fd is nonsingular if and only if d3 7- 1. 

By the above we can confine our considerations to forms F^ with d3 ^ 1. 

Theorem 6. If d3 ^ 1 then the group AutKFd is a central extension of ^3(K) by 
the group AutK(EFd). 

Proof. For any a G Aut^F^ we can write 

a(X,Y,Z) = (a1(X,Y,Z),a2(X,Y,Z),a3(X,Y,Z)) 
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where a* is a linear transformation for i = 1,2,3. 
Let 3> : AuttfPd —> AutKEFd be the map sending a to $(a) denned as follows 

$(a)(X : Y : Z) = (O i(X,Y ,Z) : a2(X,Y,Z) : a 3 (X , y ,Z) ) . 

Obviously $ is a homomorphism with ker3> = u3(K) -Id^a contained in the center 
of Aut/v-Fd- Since for O £ Aut^Fd the automorphism $(a) maps the set of points of 
inflection to itself (preserves both zeros of the form and zeros of the Hessian) we have 
Im<i> C Aut°K(EFd). It left to show that $ is an epimorphism or equivalently that 
\AutKFd\ > 3\AutK(EFd)\. We can easily show the following 54 automorphisms of 
Fd: 

a(XuX2,X3) = (aXr{l))bXr{2),(ab)~lXr{3)) 

where a,b G f.i3(K), r £ 5(3), which form a subgroup of Aut/^Kd isomorphic with 
u3(K)2 X3 5(3). Thus \AutKF\ > 54. From the Nagell's algorithm it follows that 
EFd = J5(a,6) where a = -27(d3 + 8)d , b = 54(d6 - 20d3 - 8). Thus -;-invariant 
depends on d in the following way: 
(1) 3{EFd)^ 0,1728 <=> d/o,-2€*, ( l±>/5)c* 
(2) j ( £ F d ) = 1728 <* d = ( l ± v

/ 3 ) e * 
(3) j ( £ F J = 0 <^ d = 0 o r d = - 2 e * 
where e denotes a primitive third root of unity and k = 0,1,2. 
Because of isomorphism Fd = Fdtk it is sufficient to consider the following cases: 
d = 0, d = - 2 , d = 1 + x/3-

Case ( i j d 7 - 0 , - 2 , 1 + ^/3 
Since in this case 3 |AH^(FF d ) | = 54 we are done. 

Case (2) d = 1 ± y/3 
We have to show that |AutKFd| > 108. To do this it is sufficient to indicate at least 
one automorphism of Fd different from those 54 listed above. It is easy to check 
that 

a(X,Y,Z) = (^(X + Y + Z), ^(X + eY + e2Z), ^-(X + e2Y + eZ)) 

is an automorphism of the form F 1 + ^ . 

In the case d = 1 - \ /3 we can take 

a(X1Y,Z) = -(^(X + Y + Z),^(X + eY + 62Z),^(X + e2Y + 6Z)). 

Case (3a) d = 0 
For d = 0 we have F0(X, F, Z) = K3 + Y3 + Z 3 and we need 162 automorphisms. 
Those are 

a(X\,X2,X3) — (aXr{l),bXT{2),cXT{3)) 

where a, 6, c € LA3 (IO , T € 5(3). 

Case W d = - 2 
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For d = - 2 we have F_2(K, Y, Z) = X3 + Y3 + Z3 + 6XYZ. One can check that 
F_2 is the trace form Tr3

A of K-algebra A = K[X]/(X3 - 1), where 

Trr
A : A - > K , Tr^(a) := r r ^ ( a r ) . 

Wesolowski [12] Theorem 3.3 describes the automorphism group of the trace form 
Trr

A. Since A .= K 3 we obtain 

A u t K F _ 2 ^ / i 3 ( K ) 3 X 5(3). 

Thus |Aut/<-F_2| — 162 and this is what we need. o 

Corollary 7. g(3,3) = 162 

Remark 8. Analysing the proof of the previous theorem one can write down 
explicitly the structure of the group of automorphisms in case (1) and (3). Namely, 

AllfF ^ f / i 3 ( K ) 2 > 3 5(3) if d # 0 , - 2 € * , ( l ± > / 3 ) € * 

d ~ \ fiz(K)3 X 5(3) if d = 0 or d = -2ek 

In case (2) we can only say that AutKFd is double cover of ^(K)2 X] 5(3). 

Remark 9. In the singular case (d — ek) we have 

Fek (X, Y, z) = Fi (X, r, z) = X3 + Y3 + z3 - ZXYZ. 

The form F\ is known as the norm form NA of K-algebra A — K[X]/(X3 - 1). 
A characterization of the automorphism group of the norm form can be found in 
[12] Theorem 3.4. Because A = K3 we obtain 

Aut^Fi = KerN^ X] 5(3) 2 (K*)2 X] 5(3). 

Thus, a group Aut^F i is infinite. 
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