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Big set of measure zero 

Ladislav Mišík 

Abstract: In the paper it is described a construction of a Lebesgue measure zero set of real 
numbers which can be decomposed into continuum many disjoint subsets each of which has 
intersection of power of continuum with every open interval in real numbers. 
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Introduction 
In mathematics there are several possibilities how to evaluate the size of sets. Some 
of them are the subjects of individual mathematical branches, for instance measure 
theory or dimension theory In this paper we will consider sets of Lebesgue measure 
zero in the set R of all real numbers with respect to their cardinalities. First, let 
us recall the basic notions and relations used in the sequel. 
Cardinal number or cardinality of a subset of reals means the number of its elements. 
It can be either a nonnegative integer (for finite sets), or N0 (for infinite countable 
sets) or an uncountable cardinal number (for infinite uncountable sets). In each 
case it can not overreach the cardinality of all real numbers which we will denote 
by c and it is called the cardinality of continuum. We will also use the phrase 
"continuum many" for the number of elements of such a set.1 Cardinality is the 
most general measure of the size of sets. It needs no additional structure on the set 
itself and by its means it is possible to determine the size of any set. The cardinal 
number of a set A we will denote by card A. 
Another, more specific, widely used measure of size of sets of real numbers is 
Lebesgue measure. It is a nonnegative real number attached to each measurable sub
set of R.2 The least sets with respect to this classification are the sets of Lebesgue 

Supported by Grant Agency VEGA 1/7146/20 
*In the standard axiomatics of set theory, i.e. Zermelo-Fraenkel axiomatics, it is not possible 

to decide whether there exist subsets of reals whose cardinality is strictly between No and c = 2N°. 
This question is a subject of well known Continuum hypothesis (CH) which says that there are no 
such sets. The rejection of (CH) admits such sets and without additional set-theoretical axioms 
there is no possibility to determine all possible cardinalities between No and c. 

2Notice that there is a possibility of existence of sets of reals which are not measurable in the 
sense of Lebesgue measure (by use of the Axiom of Choice). 
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measure zero (or equivalent!}- Lebesgue measure zero sets). These sets can be briefly 
characterised by the following condition 

A set Z C R is of Lebesgue measure zero if for all e > 0 there exists 
a countable system of closed intervals {In}n°~i covering the set Z (i.e. 

oo oo 
Z C (J In) such that ]T} I Ail < £» where |I| denotes the length of the 

n—l n = l 
interval I. 

There are some relations between the cardinality of a set and its Lebesgue measure. 
For instance it is easy to show that "small" sets in the sense of cardinality (i.e. at 
most countable sets) are of Lebesgue measure zero. The most known example that 
the opposite implication does not hold provides the famous Cantor set. This is the 
set of all real numbers in the interval (0,1) in whose ternary development does not 
occur the digit 1. Geometrically this set can be characterised as the set produced 
from the set MQ = (0,1) by the (infinite) inductive application of the following rule 

If the set M n is a union of a finite number of disjoint closed intervals then 
Mn+i is formed from M n by removing all the middle open subintervals 
of lengths one third of the length of the original intervals. 

Cantor set is of Lebesgue measure zero and cardinality of continuum. So it is 
the least possible set with respect to Lebesgue measure and the greatest possible 
set with respect to the cardinality. To evaluate its size let us involve the third 
"measure of the size", the topological density. 

A set A C R is dense if its intersection with each open interval is 
nonempty A set A C R is dense in the interval (a, b) if its intersec
tion with each nonempty subinterval of (a, b) is nonempty. A set A C R 
is nowhere dense if it is dense in no interval in R. 

With respect to this qualitative "measure of size" the Cantor set belongs among 
the least sets, it is nowhere dense. 

R e m a r k . Obviously, adding the set of all rationals Q to the Cantor set C, the 
set Q U C is dense, has cardinality c and Lebesgue measure zero. Therefore, we 
strenghthen the density property of a real subsets. For the purposes of this paper, 
let us call a set A C R superdense if it intersects each open interval in continuum 
many points. 

Thus a natural question arises whether there exist superdense subsets of Lebes
gue measure zero in R? 

As the following theorem says we can say even more. 

Theorem. There exists a set Z C R of Lebesgue measure zero which can be decom
posed into continuum many pairwise disjoint superdense subsets. 

Remark. The statement of the theorem can be simply derived from results by 
Glitig [G] who extended the known results by Jarnik [J] and Besicovitch [B] on 
HausdorfT dimension of sets of irrational numbers classified by their approximability 
by rational numbers. However, because of the complexity of these sets, there is no 
simple insight to the structure of the resulting decomposition. The main aim of 
this contribution is to present a simple description of such a construction. 
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Construction 
Proof of Theorem. Denote by B the set of all sequences of zeros and ones in which 
zero occurs infinitely many times and by F the set of all finite sequences of zeros and 
ones. In the sequel, for members b of the set B we will suppose b = {61, 6 2 , 63 , . . . } . 
For each / = {/1, / 2 , . . . , / n } € F let us denote 

B/ = { 6 = {61,62,63,...} e l ; 61 = / i , 62 = / 2 , . . . ,6 n = / n } . 

We will consider the terms of F as finite sequences of independent realizations of a 
binary random variable X for which p(X = 0) = p(X = 1) = | and similarly we 
will consider the terms of the set B as infinite sequences of independent realiztions 
of the same random variable. Doing so, for each / = {/1, / 2 , . . . , fn} E F we have 

P ( » / ) = ^ -

The transformation /3: 1 -> (0,1) defined by relation 

00 , 

m = £ fn 
n=l 

is bijective and moreover for each / = {/1, / 2 , . . . , / n } € F we have 

Consequently 

\ i = l 1=1 / 

p(B/ ) = A(/Г ł(B/)) = - £ , 

where A(S) denotes the Lebesgue measure of a set 5. 
Further for each b £ B let us denote 

Sn(b) = £ > 6 . - 1), 

i.e. we add a unit at indices where it is b{ = 1 and we substract a unit at indices 
where it is b{ — 0. In the sequel we will use this notation also in cases when only a 
part {61,62,... 6m}; m > n of a sequence 6 € B has been already defined. 
Evidently, the mean value of each random value in the previous sum is equal to 0 
and so the following equality holds by Borel's Strong law of large numbers [Z-S] 
(Theorem 9.5 p. 130) 

pfheM; l i m ^ ) = o } U l . 

For each a € (0,1) denote 

MQ = ( z e (0,1); limsup | S n ( / ? ~ 1 ( x ) ) l = a) . 
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The uniqueness of Lebesgue measure as the extension of Jordan content defined on 
intervals implies 

\(M0)~p (lb€B; lim - ? - ^ = oV\ = 1. 
\ [ n->oo n J / 

For each a € (0,1) let us denote Za = [ J (Ma+n) where Ma+n ~ {x+n; x G Ma] 
nez 

and Z denotes the set of all integers. The above facts, <r~aditivity of Lebesgue 
measure and its invariance under translation imply that for Z = M Za we have 

o€(0,l> 

A ( Z ) = ] T A ( | J (M a + n)) = ^ ( A ( ( 0 , l » ~ A ( M o ) ) = 0. 
n€Z a€(0,l) n€Z 

By the above definitions Zai f) Za2 = 0 for all a\ ?- a2 from the interval (0,1). So, 
to finish the proof it suffices to show that card (Za f] (a, b)) = c for each a £ (0,1) 
and each open interval (a, b) C E. 
First we will show that ca rdM a = c for each a £ (0,1). Denote by 

S = {{5i,52»53,...}; sn e {+,-} Vne N}. 

Evidently, cardS = c. Fix an a € (0,1). By means of induction we will attach to 
each s e S a number xs £ Ma such that for 5i ^ 52 we will have xSl ^ xS2. 
Step k = 1. Put 61 = 1 and b2 = 0 if si = + otherwise put bi = 0 and 62 = 1. 
Further put mi = 1 and ni = 2. 
Induction step. Let us suppose that for each i = 1,2,.. . ,k the positive integers 
mi < ni < m2 < n2 < . . . < m* < nk already has been defined together with the 
values bi for all i = 1,2,. . . , nk such that 

^ - ^ > a , 5 n . ( 6 ) = 0 , Vj = l , 2 , . . . , k 
mj 

and 

MH<a + i ,V . = l,2,.. . ,n* . 

Denote by mfc+i the least positive integer greater than n* such that mfc+--nfe > a 
and put n*+ i = m^+i + (mk+\ - nk) = 2m*+1 - nfc. If sk+i = + then put 
6i = 1, Vt = n* + 1, nfc + 2 , . . . , m*+ i a 6* = 0, Vt = m*+i + 1, mfc+i + 2 , . . . , n* + i , 
otherwise, if sk+i = - , put bi = 0, Vi = n* + l ,n* + 2 , . . . ,m*+ i a 6* = 1, Vi = 
mfc+i + 1, mfc+i + 2 , . . . , n* + i . 
In the both cases we have 

^ i M > a , 5n .(6) = 0, V7 = l , 2 , . . . , f c + 1 

and 

— : — < a + T , Vt = 1,2,. . . , n* + i . 
2 ^ 
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Set xs = 0~l(b). The construction implies that the values xs differ for different 
values of s G S, so consequently card(Ma) = c. 
Now let (a, b) c (0,1) be an arbitrary open interval. Then there exists such a 
/ = {/i,/2,... , / n } € F that P~l(Mf) C (o,6). For each b E B let us define 
<Pf(b) € 1 the unique element such that <Pf(b)x = / i , i = 1,2,... ,n and ipf(b)i+n = 
bi, i = 1,2,. . . . 

Because the value of lim sup does not depend on finite number of terms, we have 
/3(b) € Ma if and only if 0(<pf(b)) € MQ. So, as the correspondence b —> <Pf(b) 
is injective and 0(pf(b)) G (a,b), we have card(Ma f| (a,b)) = c. Finally, the 
sets Za are invariant with respect to the integer valued translations, so we have 
card(Za f) (a, b)) = c for an arbitrary open interval of real numbers. • 

Remark. Using the above mentioned results by Glitig [G] it is possible to prove 
also an extension of the statement proved in Theorem. This extension concerns 
the topological density criterion and mainly the introduction of another kind of 
measure of size of sets, the Hausdorff dimension. As the Hausdorff dimension of 
each set of reals belongs to the interval (0,1) and also the Hausdorff dimension of 
each set of positive Lebesgue measure is equal to one, it is a "natural measure of 
size" of sets of Lebesgue measure zero. In fact, in the paper [M] it is proved. 

Theorem A. There exists a subset of Lebesgue measure zero which can be de
composed into continuum many pairwise disjoint subsets each of which has the 
Hausdorff dimension 1 in each open interval and one of the sets in decomposition 
is residual in each open interval in R. 

Theorem B. There exists a subset of Lebesgue measure zero which can be decom
posed into continuum many pairwise disjoint subsets each of which is of the second 
category and the Hausdorff dimension 1 in each open interval. 
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