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On cycles and orbits of polynomial mappings Z2 *-» Z2 

T. Pezda 

1. Introduction 

For a commutative ring R with unity and 4» = (<I>(1),..., $ ( N )) , where $ ( l ) € 
R[X\,..., XN] we define a cycle for $ as a fc-tuple xo,x\,... ,Xk-\ of different 
elements of RN such that 

*(x0) = xx,$(xi) = .f2,...,$(ifc-i) = x0. 

The number k is called the length of this cycle. 
We denote CyCC(R, N) as the set of all possible cycle lengths for polynomial 

mappings in N variables with coefficients from R. We put B(R, N) as the maximal 
element in CyCC(R, N) (if there is no such maximal element we put B(R, IV) = oo). 

For x € RN and $ : RN H-> R N we define the orbit 

OUB(x, $) = {5, $(z), $2(x),...}. 

We call the orbit OHB(x, $) finite if it is a finite set. 
Define OKB(R, N) as the maximal number of elements of finite orbits 

OKB(x,$) 

with x € RN, and $ = (* ( 1) , . . . , $ (N)) with $(i) G R[xi,... ,XN]. If there is no 
such number we put OTZB(R, N) = oo. 

In 1998 W.Narkiewicz asked whether B(Z, 2) > 7. In this paper we shall 
give the positive answer to this question. Moreover, the set CyCC(Z, 2) will be 
completely determined. 

As to orbits in [NP] it was shown that OTIB(ZK, 1) < oo where ZK is the ring 
of integers in a finite extension K of Q. Moreover, it was shown that OltB(Z, 1) = 4. 
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28 Results 

Theorem 2 . 1 . CyCC(Z,2) = {24 ,18 ,16 ,12 ,9 ,8 ,6 ,4 ,3 ,2 ,1} . 
So, in particular B(Z,2) = 24. 

Theorem 2.2. OUB(Z,2) = oo. So, it follows that OHB(R,N) - oo /o r H, a rt'np 
o/ zero characteristic with unity and IV > 2 ( as Z can fee embedded into R). 

3. Auxiliary results and some notations 

3.1. The main auxiliary theorem 

Proposition 3 .1 . (JPeSj) Let R be. a Dedekmd domain. Let V(R) denote the set of 
all non-zero prime ideals of R. If IV > 2 then 

cycc(R,N)- Pi cycc(Rp,N)~ p cycc(Rp,N), 
PEV(R) pev(R) 

where Rp is the completion of Rp with respect to the obvious valuation. In particu­
lar, it holds for the rings of integers in finite extensions of Q. 

3.2. Cycles in some local domains 

Owing to the proposition 3.1 it is useful to recall some results concerning cycles in 
discrete valuation domains. 

In this subsection let R be a discrete valuation domain of characteristic zero,F 
is the unique maximal ideal of R. We assume that the quotient field R/P is finite 
and has N(P) = pi elements ( p is prime). Let n be a generator of the principal 
ideal P and let v be the norm of R, normalized so that v(~) ~ -. By w we denote 

the corresponding exponent, defined by w(x) = — If&Hf-i for x / 0 and w(0) 

We extend v and w to RN by putt ing 

v(x) = v((xi,... ,XN)) = m&x{v(Xi),i = 1 , . . . ,IV} 

and 

w(x) = w((xi,... ,XN)) = min{u;(.Xi),i = 1 , , . . ,IV}. 

The congruence symbol x = y (mod Pd) will be used for vectors x,y in RN to 
indicate that corresponding components are congruent (mod Pd), or equivalently 
w(x — y) > d. 

Denote the image of some x G RN under the canonical mapping RN —> 
RN/PRN ~ (R/P)N by x + PRN. 

A cycle XQ, ..., Xk-i will be called a (*)-cycle if for all i, j one has w(xi — Xj) > 
1. 

Definition 3.2. A (*)-cycle Xo,... ,Xk-i with k > 2 we call normalized provided 
XQ = 0 and w(x\) = 1. 

Proposition 3.3. / / there is a (*)-cycle in RN of length k >2 then there exists a 
normalized (*)-cycle in RN of the same length. 
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Proof. Let a fc-tuple XQ,X\, ... ,Xk-i be a (*)-cycle in RN for a mapping # . Then 
the /c-tuple Q,X\ - XQ,... ,xk-\ - x0 forms a (*)-cycle of length k for a mapping 
ty(X) = $(X + x0) — XQ, which is a polynomial mapping with coefficients from H. 

So without any loss of generality we can assume that XQ = 0. Pu t w(x\) = 
d > 1. Then the vectors 0, T r - ^ " 1 ^ , . . . ,7r~(d-1).~fc_i form a (*)-cycle of length 
k for ^(X) = ir~i'd~l^(iTd~lX) which is a polynomial mapping with coefficients 
from H ( as TT~^-1^(0) = T r " ^ - 1 ^ ! ' RN). • 

The cosets of elements of HA (mod P) consist a linear space over R/P and 
Lin(S) means a linear space spanned on a set S as a linear subspace of (R/P)N. 

For a cycle x0,... ,Xk-i we sometimes extend the indices by putt ing Xk = 
£o,£fc+i = X\, and so on. 

Proposition 3.4. (JPeSj) Let 0 , x \ , . . . , Xk-i he a (*)-cycle in RN ( i.e. for a suitable 
polynomial mapping with coefficients from R). Then one has that w(xm) < w(xn) 
for m\n( also for m, n > k). 

Proposition 3 .5. Let 0 , ~ i , . . • ,x,k~i he a (*)-cycle in RN for <f». Put # ' (0) = A. 

Write 
{w(xi), ,w(Xk-i)} = {d\ < d2 < • • • < dr} and mt = min{j : w(£j) = d3}. 
Then 1 = mi|7rt2 | • • • |mr|fc and 

^ t i __ m i n { i : (I + Ami + • • • + A^-^mi)i:~dixmi = 0 (mod P)} for i = 

1, 2 , . . . , r, where we put rar+i = k. 
Moreover, for i = 1 , . . . , r we have — -̂L < p/!v an^ 

(3.1) ( / + A™' + • • • + ^ ( ^ i _ 1 ) m ' ) l L t n ( r r - ^ £ m , + P R ' v ^ - . 7 r - ^ S m i 4 P / ^ , . . . ) = 0 

and 

(3.2) (I + Am> + --- + ^ ( " ^ ~ 1 ) m " ) | L i n ( _ - , i S m j + p ^ ) _ - - d l i 2 m ] + p f t N , . . . ) = 0 

So in particular 

(Ami+1 - I)\Lin(*-d'Xmi+PRN ,A~in-d>xm,+PRN,...) = ° alld 

(Ami + 1 - I)\Lin(n-dixmi+PRN,n-dix2mi+PRN,n-dix3rrii+PRN,...) = °-

Proof. From the very definition of the numbers mi we have that the cosets 

0,7T-d«-m i +PR 7 V , . . . ,7T- d 'X ( _m L ± ± _ 1 ) m i +PRN 

are all different (mod P). So - ^ < p ' N . 
The formula (2) follows from (1) and the following formula( which could be 

derived from the Taylor's expansion) 

K~diX(l + l)m, + PRN = ^ m < 7T- d i X / m i + 7T-d 'Xmi + PRN. 

The rest was proved in [Pe3]. D 

Proposition 3 .6. ([Pe2j) Let $ : RN t-> RN be a polynomial mapping with, as 
always, coefficients from R. Put $(0) = x,w(x) - d, $ '(0) = A. Then $ s (0 ) = 
(As~l + As~2 +... + A + I)x (mod P2d). 



Let Q(R/P, M) denotes the set of orders prime to p of cyclic subgroups of the 
linear group GLM(R/P) of invertible matrices M x M with coefficients from the 
field R/P. 

Let H(R/P, M) denotes the set of orders prime to p of elements A £ GLM(R/P) 
such that for some y £ (R/P)M the vectors y, Ay, A2y,... span the whole (R/P)M. 

Proposit ion 3 .7. ([PeSj) Let R be as above. Then 

(a) the length of a polynomial cycle in RN can be written in the form ab, where 
a is the length of a certain (*)~cycle in RN and b < pfN. Conversely, every 
number of that form is a length of a suitable cycle in RN. As 1-tuple 0 
forms a (*)-cycle for zero.mapping we have in particular: 

{l,2,...,pfN} cCyCC(R,N); 

(b) the length of a (*)-cycle for a polynomial mapping in RN is of the form: 

P"t[h>' 
i=i 

where ht £ U(R/P, f.)Ji + • • • + /* < N; 

(c) Let R be the completion of the ring R with respect to the norm v. Then 

CyCC(R,N) =CyCC(R,N). 
Remark 3.1. For every ring S we have that A; £ CyCC(S, N) implies / £ CyCC(S, N) 
for every divisor I of k( it suffices to take a suitable iteration). 

Proposit ion 3.8. (jPe2j) If xQ,... ,xk-i is a cycle in RN then w(xl+J - x.) = 
w(xi+J - xi) for every possible i,j,l, even bigger than k. 

4. Proof of Theorem 2.1 

Owing to proposition 3.1 we have 

cycc(z, 2) = f)cycc(zp, 2), 
v 

where Zp is the p-adic ring. 

In what follows we put Xk = (Xk)- So Xk is the first coordinate of Xk-

For p = 2 we try to find the shape of a (*)-cycles in Z\. In this case we 
apply the results of subsection 3.2 to R = Z2,P = 2Z2,ir = 2. Note that in this 
case Q(R/P,2) = {1,3} and Q(R/P,1) = {1}. This gives, by proposition 3.6 tha t 
(*)-cycles in Z\ could have lengths only of the form 2 a , 3 • 2 a . 

Note that a tuple ( J ) , ( J , ( "*) , (_°J is a (*)-cycle of length 4 for $(x,y) = 
(~y,x). 

On the other hand a tuple (J) , ( J , ("*) , ("0
7r), (_°J, ( _ J is a (*)-cycle of lenght 

6 for $(x, y) = (—y, x + y). 

Note that two just mentioned (*)-cycles of length 4,6 are suitable for every 
discrete valuation ring of characteristic zero with unity. 

Lemma 4 . 1 . There are no (*)-cycles of length 12 in Z\. 
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Proof. Assume a contrary. By proposition 3.2 we then have a normalized (*)-cycle 
0, ~ i , . . . , x n for asuitable $ . P u t $'(0) = A and 7r = 2. L e t r a i , r a 2 , . . . , m r , d i , . . . , 
d r , k be as in the proposition 3.4. So k — 12, m 2 < 4 and therefore r > 2. 

1st c a s e . m 2 6 {2,4). In this case 3 | ^ - = ^ •—- and as all the quotients 

are < 4 ( by proposition 3.4) we have that there is unique i > 2 such that 3 = m ^ + 1 . 
Again by proposition 3.4 we have 

(A2mi + Ami + I)ir-dixmi = 0 (mod P) and (A2m< + Am« + I)n-dix2mi = 0 
(mod P ) . 

But -K"dixmi + 2 Z 2 , 7 r ~ d , x 2 m i + 2Z2 are non-zero, distinct and hence linearly 
independent over R/P = Z2/2Z2 = F2. Hence , 4 2 m ; + Am> +1 = 0 (mod P ) , i.e. 
it is a zero mapping, treated as a linear mapping of (R/P)2. 

By raising to the power 4, in view of the divisibility of suitable binomial coef­
ficients by 2(which is an element of P = 2 Z 2 ) , we get that A8m* + A4m' +1 = 0 
(mod P). 

By proposition 3.5, (A3 + A2 + A + I)xx = xA = 0 (mod 4) and hence (,44 -
I)\xx = (A-I)(A3 + A2 + A + I)\xl = 0 (mod 2), whence A4\xx = ±xT (mod 2). 
Hence we obtain (A8mt + A4mi + I)\xx = 3 • | ~ i ~= 0 (mod 2), a contradiction. 

2nd c a s e . m2 = 3. In this case by proposition 3.4 (A2 + A + I)\x\ = 
(A2 + A + I)\x2 = 0 (mod P ) . As \xx + P R 2 , \x2 + P R 2 are linearly independent 
over R/P = F2 we have A2 + A + I = 0 (mod P ) and A3 = I (mod P ) . This gives 
(<~3)'(0) = ~>'(x2) o $ ' ( x i ) o $'(0) = A 3 = / (mod P ) ( we used for instance x\ = 0 
(mod P ) , so $ ' (~i) = $'(0) (mod P ) , where the congruence relation for matrices 
means that all corresponding components are congruent). 

So we can write # 3 in the following form: 
$3(x,y) = (x 3 + ( l + 2ai).r + 26ij/ + C l a; 2 + dxy + exy

2 + . . . , y 3 + 2a2rr + (1 + 
2b2)y + c2x

2 + Dxy + e2y
2 + ...). Using such notation we silently assume that 

<~i.a 2,bi, . . . . . are from R. 
As w(xs) > 2 we then have 

($6)'(o) = ($ 3 ) '(- 3 ) o ($3)'(o) = (($3)'(0))2 = (( - ^ a i

 2

 2 6 ^ 2 

( І Î ) (mod P 2 

Now by proposition 3.5 0 = x12 = (I + ($ 6 ) ' (0 ) )x 6 (mod p2™(«e)) a n c j hence, 

as u/(xe) > 2 we have 0 = (I + ($ 6 ) ' (0 ) )x 6 (mod p ^ ^ H " ) . 

So 0 = 2x6 (mod p™(~e)+2) w ^ a t leads to contradiction as w(2x&) = 1 + 

w(x6) < w(x6) + 2. • 

Notice tha t the remark 3.1 now gives tha t in Z\ there are no (*)-cycles of 
length 2 4 , 3 6 , 4 8 , . . . . 

Lemma 4 .2 . There are no (*)-cycles of length 8 in Z\. 

Proof. Assume a contrary, i.e. we have a normalized (*)-cycle 0, ~ i , . . • ,*7 in Z\ 
for a mapping $ . Again we put $ '(0) = A and ?r = 2. Moreover, put (<J>2)'(0) = 
.4i, ($ 4 ) ' (0) = A2 and $ ( x , y) = (xx + a x + (3y + cxx

2 + dxy + exy
2 + . . -, V\ + ix + 



..,s 

Sy -f C2X2 + Dxy 4- e2;y
2 + •••)• Furthermore mi,7712,... ,d i , . . . are defined in the 

similar manner like in lemma 4.1. 
As ra2|8 and m2 < 4 we háve ra2 6 {2,4}. 
Ist čase. rn2 = 4. Since in this čase ~x\ 4- PR?, \x2 4- PR2 are Iineariy 

independent over R/P, the matrix 5 = {\xi,\x-2) with entries from R = Z2 is 
invertible. 

Then 0, B~lž\,..., B~lxy is a (*)~cycle for P _ 1 o $ o B with coefficients from 
i?. Moreover, notě that w(B~~lx) = w(x), so m2 is preserved. 

Hence we can asstime that X\ — („), x2 — (2) • 
As | x j , | Ť 2 , ^3 are pairwise incongruent (mod P) we must háve \x3 = (]) 

(mod P). So ž 3 = g) (mod P 2 ) . 
From proposition 3.5 we háve (X2) = (/ + A.)(Xl) (mod P 2 ) . This gives (°) = 

( * + Q ! I s ) © (mod P 2 ) and a = 1 (mod P), 

7 = 1 (mod P). 
In the similar manner x3 = (2) = (/ 4- A 4- -42)(Q) (mod P 2 ) and by easy 

calculation Í ? E 0 (mod P),6 ~ 1 (mod P). 

So vl = ( j J J (mod P). 

If * = © Ě P * * = 2X1 then #•(,,„ H ( « +
+ * f + + * ) [mod P 2 ) . 

Now 
(*4)'(0) 

/ a + dy3 0 + dx3 \ f <* + dy2 0 + dx2 \ 
\ 7 + DÍ/3 S 4- Dx3 ) V 7 + Dy2 6 + Dx2 ) ' 
{ a + dy1 0 + d x i \ / a 0 \ 
\ 7 + Dyi 6 + Dxx ) \ 7 S ) ~ 
a 0 V ( dy3 dx3 \ ( l Q\ ( \ 0 \ / dy2 dx2 

7 5 ) +\Dy3 Dx3 J{ 1 1 ) + ^ 1 1 yl ^ Zty2 ,0^2 
%i dii W 1 0 \ / 1 o \ / 2d 2d \ ( 1 0 \ 
Dyi ZJan ; !

v 1 1 y - V 0 1 ) + { 2D 2D ) \ 1 1 J + 

(í ; ) ( s s)+(s 2S)(i ? ) - ( i ?) &-")-
Hence, by proposition 3.5 and w(x4) > 2 we háve 
0 = x8 = (/ + ($4)'(0))2ř4 (mod P 2 u ' (^)) a n d 

0 S í , ] (2ž4) (mod p*»(*4)+2^ w n ich gives a contradiction since W(2XA) < 
d 1 

d 1 w(x4) 4- 2 and ( 1 is invertible. 

2nd čase. m2 = 2 As in the čase m2 = 4 we can assume that ži = Q) 
(more strictly in the reasoning from the čase m2 = 4 we také P(J) = \x\ and we 
determine B(°) in such a way that P is invertible). 
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In view of w(x2) > 2 and proposition 3.5 we have 0 = x2 2 (1 + -4)(2) 
(mod P 2 ) and a = 1 (mod P ) , f = 0 (mod P ) . Write a = 1 + 2a ,7 = 2I \ Propo­
sition 3.7 gives £3 = f 1 = (2) (mod P 2 ) . 

Taking this into account we get 
($ 4) ' (0) = $ ' ( i 3 ) o $ ' (x 2 ) O $ ' (*!) o $ '(0) = ($ ' (x i ) o $ ' (0)) 2 = 

/ 1 + 2a /3 + 2d \ / 1 + 2a 0 
{ \ 2T 5 +2D ) \ 2T S 

1 + 2/3(1 + o)2T (/3 + 2a(3 + 06 + 2dS)(l + S2 + 2DS) \ p2 

2T(1+S)(\+S2) 2V3(1 + <5)2 + 64 ) l m o d ^ ) -
Fromu>(;r4) > w(x2) > 2 and proposition 3.5 we have 0 = xs = ( l + ( $ 4 ) ' ( 0 ) ) i 4 

(mod pw(**)+2y gQ^ w e t n e n n a v e 

( 2 + 2/3(1 + S)2T (j3 + 2a/3 + @S + 2dS)(l + S2 + 2DS) \ (x4\ 
\ 2T(1 + o)(l + 52) 2 r / J ( l + J ) 2 + 1 + S4 ) \y4) 

(4.1) = 0 (mod p ^ ( ^ ) + 2 ) . 

If in (3) we take 5 = 1 (mod P ) then we get 2x4 = 0 (mod p^(*4)+2)? what leads 
to a contradiction. 

If in (3) we take y4 £ 0 (mod p™(*4)+-) then from x4 = 0 (mod pw(*«)) we 
get 1 + S4 = 0 (mod P ) and 5 = 1 (mod P ) , what is impossible according to the 
previous reasoning. 

So we must have y4 _ 0 (mod p M - u R i ) and 5 = 0 (mod P ) . Now (3) leads 
to (2 + 2/?X>4 + £3/4 = 0 (mod P ^ S 4 > + 2 ) , 2 r ; r 4 + y4 = 0 (mod p™(*«>+-). If we 
subtract from the first congruence the second multiplied by /? we get 2ar4 = 0 
(mod p"(*4)+2) a n d X4 _ 0 ^ m o d pt i,(x4)+i) H e n c e ^ 4 = 0 (mod P ^ > + 1 ) , a 

contradiction. • 

So we have obtained tha t a (*)-cycle of length k exists in Zf if and only if 
k G {1, 2 , 3 , 4 , 6 ) . Now proposition 3.6(i) gives tha t a cycle of length it exists in Z2 

if and only if A; € { 1 , 2 , 3 , 4 , 6 , 8 , 9 , 1 2 , 1 6 , 1 8 , 2 4 } . 
To obtain the theorem 2.1 by remark 3.1 it suffices to show tha t for every prime 

p > 3 there are cycles of lengths 24,18,16 in Z2. As 24 = 4 • 6,18 = 3 • 6,16 = 4 • 4 
and there are (*)-cycles of lengths 6,4 in Z2( look at the examples just before 
lemma 4.1) we arrive at the statement as 3,4 < p 2 . 

5. Proof of Theorem 2.2 
We start with an auxiliary lemma: 

Lemma 5.1 . For every natural n there are polynomials f, g G Z[T,X) and non-zero 
m € Z[T] such that 

f(T,X)T2n+l~l H((XT)2n-2k - l) + g(T,X)f[(X2n-2k - 1) = m(T). 
k=0 fc=0 

Proof The polynomials T ^ - i ^ ( ( x T ) 2 " " 2 * - 1) and f K o ( x 2 " " 2 * - 1) are 
coprime when treated as polynomials of variable X over a field Q(T). The rest is 
obvious. fj 
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To finish the proof of theorem 2.2 take fixed s such that m(s) ^ —1,0,1 and 

6 = m(s). Now consider $(X, Y) = (X2 - g(s, b)X(X ~b)(X-b2)... (X -b2^')-

f(s, b)Y(Y - bs)(Y - b2s2)... (Y - 6 2 n" 1s 2"~ 1) , Y2 - s 2 " + \g (s , b)X(X -b)...(X-

62""1) - s 2 " + 1 / ( s , 6 ) Y ( Y - bs)(Y - b2s2)... (Y - 62"~1s2 n~1)) . 

An easy calculation gives $ J (6 ,6s) = (b2,3 ,b23 sv) for j = 0 , 1 , . . . , n and 
$ n + 1 ( 6 , 6 s ) = $ n + 2 ( 6 , 6 s ) = ••• = (0,0). From this we have #01lB((b,bs),$) = 
n + 2, as 6 7^—1,0,1. A s n could be sufficiently large we arrive at the statement of 
the theorem. 
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