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Class Number Parity of a Compositum of 
Five Quadratic Fields 

Michal Bulant 

Abstract. In this paper we show that the class number of the field Q (y/p, y/q, 
y/r,y/s,y/i) is even for p,q,r,s,t being different primes either equal to 2 or 
congruent to 1 modulo 4. This result is based on our previous results about 
the parity of the class number in the case of the field Q (y/p, y/q, \A") • 

1. Introduction 
Here we formulate the main result of this paper: 

Theorem 1 . Let p,q,r,s,t be different primes either equal to 2 or congruent to 1 
modulo 4- Then the class number of the field Q(s/p,\/q,\/r,\/s,y/i) is an even 
number. 

Remark. In the following whenever we talk about primes without further specifi
cation we will implicitly assume that p = 2 or p = 1 (mod 4). 

1.1. Notation 

In this section we introduce the notation we shall use throughout this paper. 

5 . . . a finite nonempty set of distinct positive primes not congruent to 3 modulo 4 

ns = Yli£S^ rns — Ilies m{H> w n e r e ^{2} — &,m{i) = I for I / 2 
(p/q)... Kronecker symbol 
XP (p an odd prime, resp. p = 2 ) . . . Dirichlet character of order 4 mod p (resp. 
mod 16) 
Ks = Q(y/p;peS) 
0 s = Q(Cms), where Cn = e2^n, (n = e* i / n 
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ai ... unique automorphism for / G 5 determined by Gal (Ks/Ks\{i}) = i 1 ' °j) 
Frob(/, A r ) . . . the Frobenius automorphism of prime / on a field K 
Es • • • the group of units in Ks 
Cs • • • the group generated by —1 and all conjugates of enT, where T C S, and 

{ i if r = 0, 

^ N Q r / K r ( l - C m T ) if T = {1}, 

N Q T / K T ( 1 - C m r ) if # T > 1 
1.2. T h e index of C 
In the paper [4] Kucera proves the following result: 
Proposition 1. {- 1} U {snr; 0 ^ T C 5} /orra a basis of Cs, moreover 

[Es:Cs} = 2r-s~l-hs, 

where hs is the class number of Ks and s = # 5 . 

The index of Cs plays the key role in our considerations. In the papers [3], 
[1] it has been proved that epq, and epqr are squares in Es- We will need a similar 
result for Epqrs, and epqrst but we can prove even more general s tatement. First, 
we formulate one auxiliary definition: 

Definition. For any prime / congruent to 1 modulo 4 let 6/,cj be such integers that 
I - 1 = 2b'ci, where 2 t Q, and bi > 2. For this prime / fix a Dirichlet character 
modulo / of order 2b', and denote it by tpi. Let 

Ri = {pj\ 0 < j < 2b'~2}, and R[ = C2*, • Ri 

where pi = e

4 7 r , c</(<-)) ( = C2i>,-i) is a primitive 2 6 ' ~ 1 t h root of unity. 

Remark. It is easy to see t h a t # R ; = #H{ = (/ — 1 ) / 4 Q . 

Now we can state and proof the promised result. 

Proposition 2. If # S > 1 then ens is a square in Ks-

Proof. Consider sets P, Mi defined by 

P= {a£Z\0<a< ms, (a/l) = 1 for any / G S}, 

and 

M/ = P n { a G Z | 0 < a < ms, i>i(a) € Ri} for any odd I £ S. 

For any a e P and any odd I e S we have either a € Mi or ms ~a £ Mi. Therefore 

ŝ = n(i-cs)= n^-c-xi -o 
a£P a£Mt 

= n t1 - Of1 - C) = II (a - et,)(tt. - es). 
aeMi a£Mi 

Since 2 ( # M / , we can write e n s = /3ns> where 

/̂ ns = n <&.-&; )• 
fl€M! 
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Now we have to show t h a t 0ns E Ks- We will distinguish two cases — either 2 ^ 5 
or 2 G S: In the first čase, let a be an element of the Galois group Gal (Q? /Ks)-
Then there exists an integer k such that a{(ms) = Cms- We have k G P, and 

a£Mi 

and since for any d £ Mi the number of elements a of the set Mi, such t h a t 
0i(o) — xpi(d), is equal to c / í l<gs\ í i}(* ~~ l ) / 2 which is an even integer, we have 

Let now 2 G S. First, write e n s in a slightly modified way: 

e*. = n Í1 - cs>=«&• • n (&: - cs) 
oGP a€P 

where the sum is taken over a G P. This sum is easily seen to be divisible by m s , 
therefore 

ens=± n (^a
s-cs)=± n G - C J 2 . 

0 < a < 2 m s 0 < a < 2 m s 
a = ± l (16) o~l (16) 

Vt€S:(a /ť)=l V(G5:(a/í) = l 
Let us now define 7 n s by 

0 < a < 2 m s 
a = l (16) 

Vt65:(o/ť)=l 

Then e m s = ±7ÍJ 5- We prove 7 n s G i^s- Let us také any r G Gal ( Q ( f m s ) /Ks)-
Then there is í G Z satisfying (t/l) = 1 for each / G 5 such that £ ^ s = ^ s . So 
t = ±1 (mod 8). We will show that yjls — 7 „ 5 . This fact is easy to see in the čase 
t = 1 (mod 16). lít = 9 (mod 16), then ť = t + ms = 1 (mod 16), £m s = - £ m S ' 
and 

7;s=n^ma; - o = ( - i ) n , e ^ ( ' _ i ) / 2 n^m?' - o=-*»*• 
In the remaining čase ř = — 1 (mod 8) let ť — —t. Then ť = 1 (mod 8) and 
the samé equation as above yields again 7 ^ s = 7 „ s , therefore indeed j n s G Ks-
Moreover, as ens is a positive reál number (it is a norm from an imaginary abelian 
field to a reál one), we have ens = + 7 ^ 5 . 

Finally, we have also ens — 0>\ , therefore 0ns = ± 7 n s which yields (3ns G Ks 
too. D 

For later reference we statě the definition of j3 once again: 

Definition. For any T C S, #T > 1 we define 

PnT= n ^ T " C a
T ) , 

a£Mi 

where M{ is defined as in the beginning of the proof of Proposition 2. 
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Remark. Although 0nT is defined in the way depending on the choice of I 6 T and 
on the particular selection of the character tpi it is easy to see that these choices 
can influence only the sign of /3n r . As we are not interested in this sign we do not 
specify the choice of I and ipi precisely. 

Put t ing last result together with Proposition 1 we obtain the following asser
tion: 

Proposition 3. Let 

C's = ( { - 1 } U {eT; T c 5, # T = 1} u {fa T c 5, # T > 1}). 

Then 

[Es • C's] = hs. 

As an easy consequence of this proposition we get the following 

Corollary, hs is even if and only if C's D ( E | \ Cg) ^ 0-

Thus there is a square in Q which is not a square in C's if and only if the 
class number hs of Ks is even. The conditions of existence of such a unit were 
succesfully found for the fields Ks, where the set S has up to 3 elements. The 
results are quoted below. 

In the theorems of [1] and [2] it has been shown that whenever there are primes 
p, q,r where at least 2 of the Kronecker symbols (p/q), (p/r), (q/r) are equal to 1 
then the class number of the field Q (y/p, y/q, y/r) is even. As we will use this result 
later together with the main result (concerning the biquadratic case) of the paper 
[3] it is useful to formulate them here: 

Theorem 2. Let p and q be different primes such that p = 1 (mod 4) and either 
q = 2 or q = 1 (mod 4). Let h be the class number of Q (y/p, y/q) • 

(1) If (p/q) = — 1, then h is odd. 
(2) / / (p/q) = 1, then h is even if and only if Xq(p) — XP(Q)-

Theorem 3 . Let p,q and r be different primes either congruent to 1 modulo 4 or 
equal to 2. Let h denote the class number of Q (y/p, y/q, y/r) • 

(1) If (p/q) = (p/r) — (q/r) = — 1, then h is even if and only if Xp(Qr)' Xq(Pr) • 

Xr(pq) = - 1 . 
(2) If (p/q) = 1, (p/r) = (q/r) = —1, then the parity of h is the same as the 

parity of the class number of the biquadratic field Q (^Jp, ^Jq). 
(3) 7/ (p/q) = (q/r) = 1, (p/r) = — 1, then h is even. 
(4) If (p/q) = (p/r) = (q/r) — 1, then h is even. (Moreover, if we denote 

by vpq, vPr, vqr, vpqr the highest exponents of 2 dividing the class number 
o / Q l ^ ^ l ^ Q l ^ ^ ^ t v l g ^ l - Q f ^ ^ v ^ ) , respectively, then 
Vpqr > 1 + Vpq + Vpr + Vqr.) 



Class Number Parity . . . 2 9 

2. Possible cases 
First, let us state an easy consequence of class field theory (cf. e.g. Theorem 10.1 
in [5]): 

Lemma 1 . Let S,T be sets of primes as above, and S C T. If the class number of 
Ks is even then also the class number of Kr is an even number. 

^From the previous lemma it follows that we can limit ourselves only to those 
cases where the class number of any subfield Kj, J C S is an odd number. The 
following lemma easily follows from Theorem 3 and Lemma 1. 

Lemma 2. I/ the class number of the field Q(-v/p, \Jq, \Jr, \Js, \Jt) is odd then the 
following must be satisfied: There exist four distinct primes Pi,P2,P3,P4 from the 
set {p,q,r,s,t} such that either 

• for any distinct i,j € {1 ,2 ,3 ,4} , (Pi/p3) — - 1 , or 
• exactly one pair io,jo G {1,2 ,3 ,4} of distinct indices satisfies (Pi/p7) = 1; 

any other pair of indices i,j yields (pi/pj) = — 1. 

Proof. Assume that for any four distinct primes pi,P2,P3,P4 from the set {p,q,r, 
s,t} there are at least two pairs of indices yielding quadratic residues. It can be 
easily seen that there must be three primes gi,</2,<73 from the set {p,q,r,s,t} such 
that (qi/q2) = (qi/qz) — 1- By Theorem 3 it means that the class number of the 
field Q(yjq., \Jq2, \JQZ) ls e v e n a n c l t>v Lemma 1 we get a contradiction. • 

According to Lemma 2 and thanks to the symmetry we can now investigate 
the class number of Q (yjp, <Jq, \Jr, \/s) only in the following cases: 

(1) all pairs are mutual non-residues. 
(2) (p/q) = 1, all the other pairs form quadratic non-residues 

We will be able to prove that in both cases there is an additional square in 
the subgroup C's and therefore (thanks to Corollary following Proposition 3) the 
class number of the field Q (^/p, yjq, \Jr, yjs) and thus also the class number of the 
original field is an even number. 

2.1. Search for an additional square 
In the following paragraphs we will consider the two cases individually to prove-
that in each of them we can find a unit of the form 

»=IKW- n«; 
fees JCS 

#J>2 
which is a square in E. We will need the following Proposition 3.3 of [1] which 
provides us with the necessary tools. Recall tha t the field Ks is abelian and tha t 
its Galois group can be viewed as a (multiplicative) vector space over F2 with basis 
{ai\leS}. 
Proposition 4. If there exists a function g : {o~i | / G S} —> K§, which satisfies 
el~ai = g(ai)2 for any I € S and conditions 

( 1 6 ) V/ € S : g(ai)1+a< = 1 

<17) Vp-.f t € S : g(aPl)
l-^2 = g(aP7)

1-^ 
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then e or — e is a square in Ks-

^From this proposition it is evident that it will be necessary to know the action 
of homomorphisms 01 on the generators of Cs, and C's. As this task was already 
considered in [3] and [1], we will only cite those results here: 

Proposition 5. Let T C S be arbitrary (nonempty), and I £ T, then 

f i ifT = {l}, 

(enT)1+<Xl = {(l/k)-el
k-

Froh{l'K^) if T = {l,k},l + k, 

l^;;F;r}
b(^TX{,,) * / # T > 2 . 

Let us now define an auxiliary function a using notation introduced in the 
previous section. We define 

at(s) = ( - l ) # { °<a<l\^(as)€Rl,4>,(a)eR'l} 

. /1\#{0<a<(l-l)/2\yP,(a)^R,UR'l } 

for any prime / = 1 (mod 4) and any integer s, which is a nonresidue modulo I. 
We also define the function a in the case I = 2 and s = 5 (mod 8) by the formula 

f - 1 if s = 5 (mod 16), 

\ 1 if s = 13 (mod 16). 

We need the following statement for the calculations in the next section: 

Lemma 3. If p is a prime such that either p = 2 or p = 1 (mod 4) and m,n are-
integers satisfying m , n ^ 3 (mod 8), (m/p) = (n/p) = - 1 , then 

ap(m) • ap(n) = -~xP(mn). 

Proof. This is Proposition 6 of [2]. • 

The next proposition is in fact a stronger variant of Proposition 5. 

Proposition 6. Let T C S be arbitrary, # T > 1, and I 6 T. Then 

Xk(l) if T={kJ},(k/l) = l 

ak(l)ek if T = {k,l},(k/l) = -l 
l-Frob(.,/fTN{,}) 

Pnrwn V it1 > 2-

Proof. For the proofs of the first two assertions see [3], and [2]. We now present a 
proof of the third case which is in fact an easy variation of the proof of the same 
statement for the case # T = 3 in [1]. 

Let q G T, q ^ I odd, and put ip = ipq, R = Rq. Then 

##"= n (cT-£m
a)=emT n (Wmj), 

0<a<mr 0<a<mT 

4>(a)eR,l\a i>(a)eR,l\a 
Vt^l:(a/t) = l V^i:(o/t) = l 
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where s = ^2a a with a running through the same set as in the previous products. 
It is easy to see that m^y | s, and that 

s = ip(m{l}) _~_ a (mod m n ( i } ) , 
0<a<m T \{/} 

Ma)^R, 
VW:(a/t) = l 

where (/? is the usual Euler function. 
Hence (a in the following products runs through the same set as in the previous 

sum) 

«•"=(na"fF"b ( w ( (""" , ) )" n<i-^«.,>,_™(,*(<-™)r 

a a 

{l}a _ -m{l}a\l-FTOb(lHimr\{iy)) ' l-Frob(<,A'. Ш cmVУa c~m 

Ç m r — ЯmT 

\<n) 
nT\{/} 

since PnTX{l} e KT\{i}. • 

Having the relations from the last section handy, we can try to find units 

satisfying Proposition 4. 

2.2. All pairs non-residues 

At first, we will calculate fipqrs

p. 

f}l+aP _ ol-aqara. _ n\-aq . (&-"')"* • f 0l ~a' ) * * * " 
Ppqrs — Pqrs - PQrs \Pqrs ) Wqrs ) 

= i32

qra-(~ar(s)a8(r)e;1e;1) 

•(/32

qrs-(-aq(s)as(q)e;le;1))aq 

• (Pis' {-OCq(r)ar(q)Eqle;l))aqar 

= (P2

qrs)1+aq+aq0r . K W « . W e . " V ) 

• ( o ^ a ^ q O ^ e ; 1 ) 

• (-a0(r)a r(o)£g£ r) 

= ~/3gr S • X r M X s M X o M -

As we suppose that the class number of the field Q ( v ^ ' v ^ . v ^ ) is an odd number, 

which is by the Theorem 3 equivalent to Xq(rs)Xr(qs)Xs(qr) = 1, then we finally 

have 
tfl+<rp R2 . 
Ppqrs ~~ HQrS 

Now, if we put 

9(°p) - I3pqrs0~rs£p 

g(oq) - PpqrsPprs6? 



we can see that the unit 77 = \epeqeresppqrs\ is the required additional square in E 
by verification of conditions (16) and (17) of Proposition 4. Thanks to the perfect 
symmetry we can always verify only one instance of these conditions: 

g(«P)1+(Tp = P^rV • Pqrr~l ' (~1) = P\rs ' Pqr\ = 1 

g(o-q)X-°» = Xq(rs)Xr(qs)Xs(qr) • ̂ i ^ A - . " ( - a r ( * ) a . ( r ) ) • / ? p \ , s , 

which implies g(crp)
l~aq = g(o~q)

1~~CTp, using the assumption about the class number 

of the octic subfields Q (^/p, ^/r, V*)*- a n ( l Q (>/<L- v7**' V^O. a n c l t n e derived equality 

XP(rs)Xr(ps)Xs(pr) = X g ( r s )x r (gs )x s (g r ) = 1-

2.3. One residual pair 

Let us suppose that (p/q) = 1 and all other pairs form non-residues. Further, from 
the condition that Q (y/p, y/q), Q (y/p, y/r, y/s), and Q (^/q, y/r, y/s) have all an 
odd class number we may use the following relations in our reasoning: 

• Xp(q) • Xq(p) = - 1 

• Xp(rs)Xr(ps)Xs(pr) = 1 

• Xq(rs)Xr(qs)Xs(qr) = 1 

Lemma 4 . xP(rs)Xq(rs)Xr(pq)Xs(pq) = 1-

Proof. By the assumptions made above we have 
XP(rs)Xq(rs)xr(pq)Xs(pq) = (xP(rs)Xr(ps)x.s(pr)){xq(rs)Xr(qs)Xs(qr)) = 1, using 
the evident equalities Xr(pq) = ~Xr(ps)Xr(qs) and Xs(pq) = ~Xs(pr)Xs(qr). D 

Let us now calculate P^r*, pl
p+r°8

r (the other norms we can get by the symme

try): 

fiir? = Pl/r*- = Pl/s*- • ^Irs")" 

= Pqr8 • (-aq(s)as(q)eq-
1e;1) • (- /??„ • a , ( f ) o , ( # ^ r " T r 

= e je j • ( - a , ( * ) o . ( g ) e 7 1 e 7 1 ) • (aq(r)ar(q)eq'
l£r) 

= -Q f f ( r )a r (g)a , (s )a , (g)e r e4i 

By a similar calculation we get 

f-'pqrs Hpqs t^pqs \^pqs ) Pqs \yPqs f \^pqs 
, - 2 * 2 
ps ^pqs 

t~20- ^ ps rqs ^pqs 

= (aq(s)єqßqs
2ß2

pqs) • (ap(s)єpß;s
2ß2

pqs)^ • (xvШqШ
2

pqsY 

~aq(s)ap(s)xP(я)Xq(pKєqЄ2

sßps
2ßqs

2ßf 

= aq(s)ap(s)epeqe
2
sPps

2pqs
2p2

pqs, 

where the last equation follows from our assumption that Xp(q)Xq\P) = ~ 1-
Put now ih = Ppr

lpps
lPqr

lpqs
lPpqrs. We get 

fh~°r = Xq(rs)Xr(pq)Xs(pq)Ppr
2Pps

2P2
pqrs = Xp(rs)Pp-r^s2p2pqrs 
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and 

rf* - Xp(rs)xq(rs)e;2(l;T
2flls(l-r

2$2^ 

(the equations for rj1"0" and r}1"0" we get by the symmetry). 
Let xp = xP(rs),xq - Xq(rs),xr = xs = xP(rs)Xq(rs), and 

s , - I 1 xlx'= l 

yei if xi = - 1 

for any / e {p,<?,r, sV Further, let 

rj~m n ^' 
.G{p,c/,r,s} 

and 

9(°p) = M p ^ / W * 
g(ar) = 6re;1fe10p.0;r

1Pqtfc\Ppqr, 

and symmetrically for g(oq),g(as). Then r?1- '7 ' = #(<7;)2 for any / G {p,g,r , s} . 
We will now verify conditions (16), (17) for the pairs (p,g), (p , r ) , ( r , s ) , which 

is sufficient thanks to the symmetry. We have 

g(ap)
1^ = 6l+*»Xq(rs)Xr(pq)Xs(pq) ~ 1 

5 M 1 + ^ = ^ + - X p ( r s ) X g ( r s ) = l 

since xi = Sj+Cf' for any / € {p, g,r, s} . 

P ^ P ) 1 " ^ = - a p ( r ) a P ( s K ( p W P ) * ^ r " 1 ^ 1 ^ ^ 

P ( ^ ) 1 _ < T p = -o: ( ?(r)ag(s)Q r(g)Q8(g) -e^ej1^, 

and as we can get using the above lemmas 

ap(r)ap(s)ar(p)as(p) • aq(r)aq(s)ar(q)as(q) = xP(rs)Xq{rs)Xr(pq)Xs(pq) = 1, 

it follows that ^((Tp) 1 - ^ = g(aq)
1~arp. 

In the second case 

9(or)]-ap = -Xr(P9)xs(pg)a,(r) -e^ej'&PlfaPrf.far. 

which yields similarly as in the previous case that g(ap)
1-<Tr = g(ar)

1~crp. 
Finally, 

g(ar)
1-^ = aP(r)ap(s)aq(r)aq(s)-e-2e-2e-r

2ef 

g(as)
1^ = ap(r)ap(s)aq(r)aQ(s) • e'p

2 z~2 e~2 z~s
2 f ? p r ^ 

which is trivially equal. 
Thus we have shown that r\ meets conditions (16), (17) of Proposition 4 and 

therefore there exists a unit r\\ £ E which is the additional required square. 
Altogether we get Theorem 1 proved. 
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