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Class Number Parity of a Compositum of
Five Quadratic Fields

Michal Bulant

Abstract. In this paper we show that the class number of the field Q (\/7, /4,
V7,5, V1) is even for p,q,r,s,t being different primes either equal to 2 or
congruent to 1 modulo 4. This result is based on our previous results about
the parity of the class number in the case of the field Q (\/?, /3, Vr)-

1. Introduction

Here we formulate the main result of this paper:

Theorem 1. Let p,q,7,s,t be different primes either equal to 2 or congruent to 1
modulo 4. Then the class number of the field Q(\/p, /3, /7,V/5, V1) is an even

number.

Remark. In the following whenever we talk about primes without further specifi-
cation we will implicitly assume that p=2 or p=1 (mod 4).

1.1. Notation

In this section we introduce the notation we shall use throughout this paper.

S ... a finite nonempty set of distinct positive primes not congruent to 3 modulo 4
ns = [liesl, ms = [[jes mpy, where mypy = 8,myy = Lfor I # 2

(p/4q) . .. Kronecker symbol

Xp (p an odd prime, resp. p = 2)... Dirichlet character of order 4 mod p (resp.
mod 16)

Ks=Q(ypipeS)

QS = Q((ms)’ where <" - 627”/“, En — em/n
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0y ... unique automorphism for ! € S determined by Gal (KS/KS\(I)) ={1,01}
Frob(l, K) ... the Frobenius automorphism of prime ! on a field K

Eg ... the group of units in Kg

Cs... the group generated by —1 and all conjugates of €,,, where T C S, and

1 it T=0,
Enr = { HNorier (1= Gmp) i T = {1,
Nor /K7 (1 = Cmr) if #T'>1
1.2. The index of C
In the paper [4] Kuéera proves the foliowing result:
Proposition 1. {~1} U {e,,;0 # T C S} form a basis of Cs, moreover
[Es : Cs) =2¥"*"" . hg,
where hg is the class number of Ks and s = #S.

The index of Cs plays the key role in our considerations. In the papers (3],
[1] it has been proved that €,q, and €,,, are squares in Es. We will need a similar
result for €pgrs, and epqrse but we can prove even more general statement. First,
we formulate one auxiliary definition:

Definition. For any prime [ congruent to 1 modulo 4 let b, ¢; be such integers that
I —1 = 2%¢, where 2t ¢, and b, > 2. For this prime [ fix a Dirichlet character
modulo [ of order 2%, and denote it by ;. Let

Ri={p]|0<j<2"?}, and R} = (- R
where p; = e™iet/U=1) (= ()1, 1) is a primitive 2% ~!th root of unity.

Remark. 1t is easy to see that #R; = #R] = (1 — 1)/4q.

Now we can state and proof the promised result.
Proposition 2. If #S > 1 then ey is a square in Kg.
Proof. Consider sets P, M; defined by
P={a€Z|0<a<ms,(a/l)=1 forany L€ S},

and
M[:Pﬂ{aEZ|0<a<ms,¢‘(a)€Rz} for any odd [ € S.
For any a € P and any odd | € S we have either a € M; or ms —a € M;. Therefore

ens = [JO-¢h) = JT - -6

a€P aeM,;
= [T a-aa-62 =TI s - ). - &2
aEM,; a€M;

Since 2 | #M;, we can write ens = B2, where

Bns = T (€as - &22)-

aEM,;
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Now we have to show that 0, E Ks- We will distinguish two cases — either 25
or 2 G S: In the first Case, let @ be an element of the Galois group Gal (Q?/Ks)-
Then there exists an integer k such that a{(,) = Cm- We have k G P, and

atMi
and since for any d £ Mi the number of elements a of the set Mi, such that
0i(o) — xpi(d), is equal to °/il<gs\ii}(* ~~ 1)/2 which is an even integer, we have

Let now 2 G S. First, write eys in a slightly modified way:
il
e.=nl- o= o n(&: - Cy)
oGP atP

where the sum is taken over a G P. This sum is easily seen to be divisible by ms,

et N (Mec)=t n G-CJ%

O<a<2ms 0<a<2mg
a=l (16) ol (16)
Vtes: (alf)=1 V(GS:(a/i) =1
Let us now define 7, by
0<a<2m,
a=1 (16)
Vt65:(o/t)=I
Thene, , = i7iJ; We prove 7, G i"s- Let us také any r G Gal (Q(f,,) /Ks)-

Then there is i G Z satisfying (#//) = 1 for each / G 5 such that £* = "~ . So
t = %1 (mod 8). We will show that yj, — 7,. This fact is easy to see in the Case
t =1 (mod 16). lit =9 (mod 16), then ¥ =+t +m = 1 (mod 16), £fm = -£m"
and
s And, o oomea(r 1)/2 A =
T.=n"m; - 0=(-1) n'm! -0 -Fy*e
In the remaining ¢ase ¥ = —1 (mod 8) let ¥ — —«. Then ¥ = 1 (mod 8) and
the samé equation as above yields again 7% = 7, , therefore indeed j ,, G Ks-
Moreover, as e, is a positive redl number (it is a norm from an imaginary abelian
field to a redl one), we have e, = +7" .

Finally, we have also e, — 0>\ , therefore 0, = £7 _ which yields (3, G Ks

too. D
For later reference we staté the definition of j3 once again:
Definition. For any T C S, #T > 1 we define
— A " a
Pnr_ n-, C T)’
aEMi
where M is defined as in the beginning of the proof of Proposition 2.
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Remark. Although 3, is defined in the way depending on the choice of | € T' and
on the particular selection of the character v it is easy to see that these choices
can influence only the sign of B,,.. As we are not interested in this sign we do not
specify the choice of I and ¥ precisely.

Putting last result together with Proposition 1 we obtain the following asser-
tion:

Proposition 3. Let
Co={-1}U{ers TC S #T =1} U{Bri T C S, #T > 1}).
Then
[Es : C%) = hs.
As an easy consequence of this proposition we get the following

Corollary. hg s cven if and only if C5 N (E%\ CE) # 0.

Thus there is a square in Q which is not a square in Cy if and only if the
class number hg of Kg is even. The conditions of existence of such a unit were
succesfully found for the fields Kg, where the set S has up to 3 elements. The
results are quoted below.

In the theorems of (1] and [2] it has been shown that whenever there are primes
p,q,r where at least 2 of the Kronecker symbols (p/q), (p/r), (¢/r) are equal to 1
then the class number of the field Q ( /B, /7, V/T) is even. As we will use this result
later together with the main result (concerning the biquadratic case) of the paper
[3] it is useful to formulate them here:

Theorem 2. Let p and q be different primes such that p = 1 (mod 4) and either
g=2org=1 (mod 4). Let h be the class number of Q(/p,/q)-

(1) If (p/q) = —1, then h is odd.
(2) If (p/q) =1, then h is even if and only if x4(p) = xp(q)-

Theorem 3. Let p,q and r be different primes either congruent to I modulo 4 or
equal to 2. Let h denote the class number of Q (y/B, v/, V/T)-

(1) If (p/a) = (p/r) = (g/r) = —1, then h is even if and only if x,(qr) xq(pT)-
xr(pg) = —1.

(2) If (p/9) =1, (p/r) = (g/r) = —1, then the parity of h is the same as the
parity of the class number of the biquadratic field Q( /P, /7)-

(3) If (p/q) = (g/r) =1, (p/r) = —1, then h is even.

(4) If (p/a) = (p/r) = (g/r) = 1, then h is even. (Moreover, if we denote
by Upq, Upr, Vgr, Upgr the highest exponents of 2 dividing the class number
of Q(vP, vVa), Q(vP, v7), Q(Va, V7). Q(/P, /4, VT), respectively, then

Upgr = 1+ Upg + Vpr + Vgy.)
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2. Possible cases

First, let us state an easy consequence of class field theory (cf. e.g. Theorem 10.1
in [5]):

Lemma 1. Let S,T be sets of primes as above, and S C T. If the class number of
K 1s even then also the class number of Kt is an even number.

(From the previous lemma it follows that we can limit ourselves only to those
cases where the class number of any subfield K;, J C S is an odd number. The
following lemma easily follows from Theorem 3 and Lemma 1.

Lemma 2. If the class number of the field Q(\/P, /@, VT, /5, V1) is odd then the
Jollowing must be satisfied: There exist four distinct primes py,p2,Ps,Pa from the
set {p,q,7,8,t} such that either

o for any distinct i,j € {1,2,3,4}, (pi/p;) = -1, or

e ezactly one pair o, jo € {1,2,3,4} of distinct indices satisfies (p;/p;) = 1;

any other pair of indices i, j yields (pi/p;) = —1.

Proof. Assume that for any four distinct primes pi, p2, p3, ps from the set {p,q,r,
s,t} there are at least two pairs of indices yielding quadratic residues. It can be
easily seen that there must be three primes gy, g2, ¢s from the set {p,q,r,s,t} such
that (¢1/¢2) = (¢1/¢g3) = 1. By Theorem 3 it means that the class number of the
field Q(/7,, /@, v/d,) is even and by Lemma 1 we get a contradiction. o

According to Lemma 2 and thanks to the symmetry we can now investigate
the class number of Q(\/P, /4, /T, /s) only in the following cases:

(1) all pairs are mutual non-residues. ’

(2) (p/q) = 1, all the other pairs form quadratic non-residues

We will be able to prove that in both cases there is an additional square in
the subgroup C% and therefore (thanks to Corollary following Proposition 3) the
class number of the field Q(\/ﬁ, Vi, VT, \/3) and thus also the class number of the
original field is an even number.

2.1. Search for an additional square
In the following paragraphs we will consider the two cases individually to prove
that in each of them we can find a unit of the form
n=[la II 82
kes JCS
#7>2

which is a square in E. We will need the following Proposition 3.3 of [1] which
provides us with the necessary tools. Recall that the field Kg is abelian and that
its Galois group can be viewed as a (multiplicative) vector space over F, with basis
{o1|l € S}.

Proposition 4. [f there ezists a function g : {o|l € S} = KJ, which satisfies
€7 = g(a1)? for any l € S and conditions

(16) VieS: glo)tr =1

an ¥p1,p2 € S 2 glay, )1 7o = g(op,)' T
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then € or —¢ is a square in Ks.

(From this proposition it is evident that it will be necessary to know the action
of homomorphisms o; on the generators of Cs, and C. As this task was already
considered in [3] and [1], we will only cite those results here:

Proposition 5. Let ' C S be arbitrary (nonempty), and l € T, then

-1 if T ={l},
e R L R LT S (N RN )

1-Frob(l,K. ) . n
iy KTV if #T > 2.

Let us now define an auxiliary function a using notation introduced in the
previous section. We define
u(s) :(¥1)#{ 0<a<t| wi(as)ERy, vi(a)ER] }

.(,1)#{0<asu—1)/2|w1(n>¢n.un;}

for any prime ! = 1 (mod 4) and any integer s, which is a nonresidue modulo !.
We also define the function « in the case ! = 2 and s = 5 (mod 8) by the formula

-1 ifs=5 (mod 16),
as(s) = . _
1 if =13 (mod 16).
We need the following statement for the calculations in the next section:

Lemma 3. If p is a prime such that either p = 2 or p = 1 (mod 4) and m,n are
integers satisfying m,n £ 3 (mod 8), (m/p) = (n/p) = —1, then

ay(m) - ap(n) = —xp(mn).
Proof. This is Proposition 6 of [2]. ]
The next proposition is in fact a stronger variant of Proposition 5.

Proposition 6. Let T' C S be arbitrary, #T > 1, and l € T. Then

() if T={k1},(k/)=1
s = Jon()es if T={k1},(k/l)=~-1
Bt H0) g 5 g,

Proof. For the proofs of the first two assertions see [3], and [2]. We now present a
proof of the third case which is in fact an easy variation of the proof of the same
statement for the case #T = 3 in [1].

Let ¢ € T, q £ l odd, and put ¢ =, R = R;. Then

prio= I @, -&o=&, I a-G2).
0<a<mry 0<a<mr
P(a)ER, lfa ¥(a)€R,lfa
Vi#£l:(a/t)=1 Vi#l(a/t)=1
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where s = ) a with a running through the same set as in the previous products.
It is easy to see that my; | s, and that

s=e(mgy) Y a (mod mpgy),
0<a<mry (1
¥(a)€R,
Vtstl(a/t)=1

where ¢ is the usual Euler function.
Hence (a in the following products runs through the same set as in the previous
sum)

greon — (H§m<.,a)“'F""’("Q(%r\u)))v H(l B g],;\w)14Frm,(:.o(<m7.\m))"

a

= H( maye —rnm")l_Frob(l‘o(€"“r\{l)))7I 1-Frob(1Kry(1)) ™"

mr = Pnrvy

since By, oy € K1\(1)- ]
Having the relations from the last section handy, we can try to find units
satisfying Proposition 4.
2.2. Ali pairs non-residues
At first, we will calculate ﬂ,l,qt?.
Bt = Biroeerer = Blre - (Bh)" - (Bard™) ™
=B, (~ar(s)as(res e )
(B (eq()as(@)ey e )
(B (—agran(@ey e )™
_ (ﬁgr‘)l+aq+uvn, '(’ar(s)aa(,r)s:le:l)
(ag(s)as(@)eqe; )
(—aq(r)ar(g)eqer)
= =B Xr(@8)Xs (r2)Xq(78):

As we suppose that the class number of the field Q(

V@ V/7,/3) is an odd number,
which is by the Theorem 3 equivalent to xq(r$)Xr gs)xs(q7)

= 1, then we finally

have
Brkar = —Bors-
Now, if we put
9(op) = qufﬁﬂqrs
( ) ﬁpﬂr"ﬂﬂﬂ
g(or) = ﬂpq”ﬂpq-’ T
9(04) = BarsByars
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we can see that the unit n = |epe4€r€48pgrs| is the required additional square in E
by verification of conditions (16) and (17) of Proposition 4. Thanks to the perfect
symmetry we can always verify only one instance of these conditions:

glop)tr = Bty B (F1) = Bl BrE =1
9(0)" 77 = xp(78)xr (PS)Xs (PT) - ByraBar2eres - (—an(8)s(T)) - Brygrs
9(0)" 7" = xq(rs)x,(45)xs (a7) - BB aeres - (—an(s)as(r)) - Bhyrs,

which implies g(a,,)! =97 = g(a,)' =77, using the assumption about the class number

of the octic subfields Q (/p, 7, V/s), and Q(/g, v/7,/s), and the derived equality
Xp(75)xr(P8)Xs(PT) = Xo(rs)x-(g8)Xs(gr) = 1.

2.3. One residual pair
Let us suppose that (p/g) = 1 and all other pairs form non-residues. Further, from

the condition that Q(\/p,vd), Q (P, v7,/s), and Q(1/q,v/7,V/s) have all an

odd class number we may use the following relations in our reasoning:

° Xp(q) - xq(p) = —1
o Xp(rs)xr (ps)xs(pr) = 1
* Xq(rs)xr(gs)xs(gr) =1
Lemma 4. x,(rs)x,(rs)x-(Pa)xs(pg) = 1.
Proof. By the assumptions made above we have
Xp(r8)Xq () X (P0) X (P9) = (xp(rs)x-(p8)xs (Pr)) (xq (rs)xr(g5)Xs(a7)) = 1, using
the evident equalities x-(pg) = —x-(ps)x-(gs) and xs(pq) = —xs(Pr)xs(qr). 0
Let us now calculate [f,',;r‘;", Biter (the other norms we can get by the symme-
try):

Boar = Bars™ " = Bars” (Br”) ™
= Bl (—ag(as(ger ") - (B2, - ag(r)ar(@er e )™
=eiel (—ag(s)as(q)e; 'e;") - (ag(r)ar(g)e; "er)
= —ag(r)ar(@)ag(s)as(gleres
By a similar calculation we get
Bodre = Bras o1 = B (B )™ - (Bp™) ™™
= (g (324877 Bpaa) - (p()epBips Bpaa) 7 - (xp(@)Xa (P)}0s) 77"
= “aq(S)O‘p(S)XP(Q)Xq(P)EPEqEZﬂ,;Z ;Z iqs
= “q(S)ap(s)fpequﬂy_g ;;2 Eqs'
where the last equation follows from our assumption that Xp(ll)Xq(P) =-1

Put now m1 = 8, 8,5 8o By Bpars. We get

- _ _ -213-2732
M = Xo(r8)xr (P)Xs (00) 85 By 2 Bers = Xp(r5)Bor Bps Bpars
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and
M= = Xp(r8)Xa(rs)e;? B, B2 Ber’ BrsBrasBoars
(the equations for 7!~ and =%+ we get by the symmetry).
Let 2, = xp(rs),zq = Xq(rs), T, = x5 = x,p(rs)x,(rs), and

5 = 1 Tf )
g ifmy

for any | € {p,q,r,s}. Further, let

1
-1

and
9(0p) = 658, By Bpgrs
9(07) = 6:65" B, BpsByy' BasBrgs Bpars
and symmetrically for g(og),9(a5). Then ' =% = g(oy)? for any | € {p,q,7,s}. )
We will now verify conditions (16), (17) for the pairs (p,q), (p,7), (r,s), which
is sufficient thanks to the symmetry. We have
9(0p)"77 = 8577 xo (r8)xr (Pa)xs (PQ) = 1
g(ar)l+0p = ‘si+qup(Ts)Xq(Ts) =1
since z; = 6ll+”' for any l € {p,q,7,s}.

1-04 -1

= —ap(r)op(s)ar (p)as(p) - €7 €5 Bogrs
= —aq(r)ag(s)ar(q)as(q) - €7 €y Bpyrs

and as we can get using the above lemmas

9(op)
!](’Jq)lvav

ap(r)ap(s)ar(p)as(p) - ag(r)ag(s)ar(9)as(q) = xp(rs)xq(rs)x- (Pa)xs(Pg) = 1,

it follows that g(op)! =% = g(a,)' ~r.
In the second case
9(0p)' =7 = =xp(r8)q(s) - €5 '€ By, Bra e By Brars
9(00)' 77 = —xr(PQ)Xs () g (7) - €7 €7 2 B5, By Bes Bras Bgra

which yields similarly as in the previous case that g(o,)! =7 = g(o,)' 7.
Finally,
9(0:)' 7" = ap(r)ap(s)ag(r)aag s) - €5 e e 25 By B Byr BasByar Boas Boars
9(04)' 7 = ap(N)ap(s)ag(ray(s) - e %, er 265 B3 85,83 BaoBrgr Bras Bpars
which is trivially equal.
Thus we have shown that 7 meets conditions (16), (17) of Proposition 4 and

therefore there exists a unit n; € E which is the additional required square.
Altogether we get Theorem 1 proved.
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