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Computing all elements of given index in sextic fields 
with a cubic subfield 

István Járási 

Abstract. There are no general methods for calculating elements of given index 
in sextic fields. This problem was investigated only in sextic fields having 
quadrat ic subfields. 

In the present paper we give an algorithm to compute all elements of given 
index in sextic fields containing a cubic subfield. To illustrate the method we 
give a detailed example in the last section. 

1. Introduction 
Let K be an algebraic number field of degree n with ring of integers 2>K- The index 
of a primitive element a £ Z/c is defined by 

J(Q) = ( Z j r : Z [ o ] ) . 
It is a classical problem in algebraic number theory to determine all elements of 
%K of given index. It is obvious tha t {1, a, a2,..., an~1} is an integral basis, if and 
only if 1(a) = 1. Such an integral basis is called power integral basis. If there exists 
such an a £ ZK, then Z ^ is called monogene. 

Let {l,cj2, • • • ,w n } be an arbitrary integral basis in K. Then the discriminant 
of the linear form l(x) = x2u2 + . . . + xnun can be written as 

(1.1) D(l(x)) = (I(x2,...,xn))
2-DK 

where I(x2, • • • ,xn) is the index form corresponding to the integral basis {l,a?2« 
...,un}, and DK is the discriminant of the field K. This index form has the 
property that for an arbitrary primitive element 

a = xi + X2UJ2 + . . . + xnojn e TLK 

the equation 
I(a) = \I(x2,...,xn)\ 

Received: January 31, 2002. 
2000 Mathematics Subject Classification: 11Y50, 11D57. 
Key words and phrases: index form equations, sextic fields, power integral bases. 



5 0 Istv&n J&rAsi 

holds. Consequently, the index of a primitive a € "LK can be determined by 

(1.2) I(a) = — 1 ^ t < ^ n i 

where a ^ (1 < i < n) denote the conjugates of a. So the problem of determining 
all elements of TLK of given index g is equivalent to solving the index form equation 

I{x2,...,xn) = ±g [x2,...,xn € Z) . 

For an arbitrary 2 € Z the indices of ±c* + z are the same. These numbers are called 
equivalent. In 1976 K.Gyory [10] proved in an effective form that an index form 
equation has only finitely many solutions, tha t is up to equivalence there are only 
finitely many elements of ZK of given index. For related results on power integral 
bases and algorithms for solving index form equations see Gyory [11] and Gaal [6]. 

In this paper we consider sextic fields. There are no general effective algorithms 
for solving index form equations in sextic fields. The only case when algorithms 
for determining all elements of given index were formerly described is the case of 
sextic fields with a quadratic subfield, cf. I.Gaal [4],[5] and I.Gaal and M.Pohst 
[8]. In this case the index form equation implies a relative Thue equation over the 
quadratic subfield which makes the resolution easier. 

Our purpose is to consider sextic fields having a cubic subfield. This case was 
partially investigated by the author in [12] where an algorithm is given to compute 
generators of power integral bases having "small" coordinates in an integral basis. 
In this case the index form equation is much more complicated than in the pre
viously considered sextic fields but using the ideas of I.Gaal and K.Gyory [7] and 
the method of Wildanger [13], [14] for the enumeration of the "small" values of the 
exponents in unit equations, it can be solved within reasonable time. In this paper 
we give a feasible algorithm for the complete resolution of index form equations in 
such fields. Using s tandard arguments we reduce the index form equation to unit 
equations in two variables. These unit equations are solved by using the reduction 
method and enumeration method described by Gaal and Pohst [9]. This enumera
tion method is based on K. Wildanger's ideas, cf. [13], [14], Below we consider in 
detail the most difficult case when the sextic field is totally real and has the largest 
possible Galois group 5 4 x C2. 

2. The unit equation 
Let K be a totally real sextic field with a cubic subfield M and with Galois group 
S4 x C 2 . Denote by ZK the ring of integers of K, and by DK its discriminant. 
Similarly, let TLM be the ring of integers of M , and DM its discriminant. Let Q be 
a primitive integral element of M , and let i ? b e a primitive integral element of K. 
For simplicity we assume tha t any a € ZK can be represented in the form of 

a - X.Q +X!Q + X2Q
2 + y0$ + yiQ$ + y2Q2$, 

with Xi,yi G Z. Note tha t otherwise in this representation a common denominator 
d appears. In such cases the same arguments work but instead of g we have g • d15 

on the right side of (2.1). 
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Let Q{%) (i = 1,2,3) denote the conjugates of Q. Similarly, we will use the 
notation M ( i ) = Q(g{i)) , i = 1,2,3. Let tf(»-),0(*2) denote the conjugates of tf over 
M ( i ) (i = 1,2,3), respectively. Let K{ip) = Q(tf( ip )) , i = 1,2,3 , p = 1,2. Then 
the conjugates of a are 

a{ip) = x0+xie
{i) +X2(Q^)2 +yQd{ip) + ylQ

{i)^tp) + y2(Q
(t))2'd(ip) 

for 1 < » < 3,1 < p < 2. Here we note that since for p = 1,2 M ( i ) C A' ( , p ) holds, 
one can express an arbitrary a ( t p ) 6 %KHP) in terms of powers of the tf(ip)~s and 
rational integers. 

Our purpose is to determine all solutions of the equation 

(2.1) I(a) = g(aeZK) 

for a fixed g € Z . For 

1 < t , i < 3 , l < P , g < 2 , ( i ,p) 9 - 0 . 9 ) 

consider the linear forms 

l{ipJq)(x1,x2,yo,yi,y2) = 

= (Q{I)-QU))X1+((Q{I))2-(QU))2)X2 + 

+ (.tf('p) - t?(^))y0 + (ff<*)^P) - Q(3)^))yi + ((Q^)2^) _ ( ^ ' ) ) 2 ^ ) ) y 2 . 

Using (1.2) and this notation, (2.1) can be written as 

(2.2) n / ( i p j g ) ^ i ' x 2 ^ o ' ^ ' ^ ) = ± 5 v / [ D d , 

where the product extends to the tuples (ip,jq) where (i,p) -< (j,q) in the lexico
graphical order. When we reduce an index form equation to unit equations, we use 
the above defined linear forms. In this case we assume a cubic subfield, so we can 
have several types of unit equations depending on the choice of the linear forms. 
For {ij, k} = {1 ,2 ,3} and 1 < p,q,r < 2 Siegel's-identity gets the form 

(2.3) l{ip'jq) + l(iq<kr) + l{kr'ip) = 0 

in the variables (x1,x2,y0,yi,y2)-
Since the Galois group of the cubic subfield M is not cyclic (this is satisfied 

in our case, otherwise the Galois group of K has a t most 24 elements), there is 
an automorphism of the Galois group of M interchanging Q(I) and Q(J) (i / j). In 
view of the arguments of the Proof of Theorem 1 of [12], this can be extended to 
an automorphism of the Galois group of K, interchanging $ ( i p) and d^3q). This 
isomorphism leaves L{ipJq) = Q(i9 ( tp) + flUi) ^(ip)tfUQ)) fixed, hence it is a proper 
subfield of K{tp)K{jq) which is also a proper subfield of the normal closure of K of 
degree # ( 5 4 x C2) = 48. Hence the degree of L{ip<3q) cannot exceed 12, so its unit 
rank is < 11. (Note tha t in the totally real case under consideration this maximum 
is reached.) This idea was first used by Gaal and Gyory [7]. 

Let a = x0 + xiQ + x2Q
2 + yod + y\Q& + y2Q2$ be a solution of (2.1), and 

, . a(ip) _ a{jq) 
X(*P,3Q) -

$(ip) - #(ifl) " 



It is easy to see that there is an integer del, such that arbitrary Q G Z K can be 
represented in the form of 

z0 + zyd + z2d
7 + z3ti

3 + z^4 + z5i?5 

a = 7 — — — • 

where z{ G Z for i - 0 , . . . , 5. (If / (# ) = 1 then d = 1). Hence d8{tP'Jq) will be an 

integer in L{ip>jq). 
Using this notations (2.2) can be written as 

(2.4) n><*-*> = * ~ £ , 

where the product, is taken for the same tuples (ip,jq) as (2.2). Again using the 
arguments of the Proof of Theorem 1 of [12] it is easy to see that there exists an 
automorphism of the Galois group of K mapping -d{tp) to t?(*r) and simultaneously 
d^ti to d{ls), if 1 <k,l < 3,fc ̂  1,1 < r, s < 2. (For this observe that A; or l i s equal 
to i or j and recall tha t the Galois group of M is not cyclic.) This automorphism 
maps 6{ip-jq) to 5{kr'l8). Thus equation (2.4) is a norm equation in L{ipJq), so there 
exist an integer yiwi) of norm ±&£! and a unit rf{ip^ <E L{ip'3q) such tha t 

dS{tp'jq) = «( iP'j«)7( iP'j«f) 

Note that the following computations must be performed for a complete set of non-
associate integral elements 7 of L{lp-)q) of norm ±s£--, which can be determined 
e.g. by KASH [2]. Let 

0«P.i«,*r) = 7 ( i p ' J 9 ) ( ^ P ) - ^ ( J 9 ) ) 
7(tp,fcr)(^(tp) _fl(kr)y 

Using this and (2.3) we have 

. . . . . r>(iP,jq) n(
kr>Jq) 

(2.5) flwM) !>^ + ptkwM !1L1A = L 
f^P.fcr) ^ ^(fcr.tp) 

Since the 77-s are conjugated to each other, and they lie in a totally real field of 
degree 12, the number of unknown exponents in this unit equation is 11.(Here note 
again that in this paper we deal with the most difficult case i.e. when the degree 
of L{tpJq)) is exactly 12 and it is also a totally real field, so it has 11 fundamental 
units. Generaly there are less then 11 fundamental units, because the degree of 
L(*P.j-)) is at most 12) 

Denote by {£1, . ..,£11} a set of fundamental units of L{ip'jq). Let {i,j, k} = 
{1, 2,3} and 1 < p , q, r < 2. Then there are rational integers a i , . . . , an such tha t 

,(E
(řM)" (&pM)° 
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(h- 1,.. .,П), 
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єh 
11 

џdP,JяM) _ Д f [ip,зяM)\ h 

h=i 
and 

c(ip,j ,kr) _ ß(ip,jq,kr ) n(ip,ЗQ,kr) ^ 

by (2.5) we have 

ß(ip,jq,kr) {^(ipJ M^y1  Лjip,j9,fcr)\ai 

' ^ l l ) 
1 + 

+ ß(kr,jq,ip) íu(kr,jq,ip)\ӣï  - (^*)) '" = 1 

or simply 
t(ip,3Q,kr) _|_ c(kr,jq,ip) _ ^ 

and this unit equation can be solved using Baker's method, reduction procedures 
and Wildanger's enumeration method. This procedure was first described by Gaal 
and Pohst [9]. 

After solving this equation in the variables o i , . . . , o„ one has to consider the 
system of linear equations 

(2.6) l^iq)(xux2^yuy2) = i ^ . ^ y v J * ) (e[ipJq)y (eu
pJq)yU 

for all possible indices, and solving this it is easy to calculate Xi,.C2,j/o>2/i,S/2-

3. Baker's method 
Taking logarithms for each possible indices we have 

Gl l0g |^ P ^ ' f e r ) | + • • • + On log|l/<™«'*r) | = l o g | / ^ ^ r ) | 

One can consider the above equations (for each possible indices) as a system of 
linear equations in a„ . . . , o„ . The matrix of this system of linear equations has 
linearly independent columns, cf. [7]. Hence one can select eleven tuples (ip,jq, kr) 
of indices such that the coefficient matrix M of the left hand side will have rank 
11. Let (ioP,joq,kor) be the index for which |log|/i(tp,jf9,fcr)|| attains its maximum. 
Then by multiplication by the inverse of M one can express the variables a\,..., o „ , 
and we conclude 

A = max \ah\ < Ci|log|p(ioP'jo9'fc°r)||, 

where cx denotes the row norm of M _ 1 , that is, the maximum sum of the ab
solute values of the elements in the rows of M~l. Note that M should be cho
sen such that ci becomes as small as possible. Now if |̂ (*oP>jog,*or)| <- \ then 
log|/z(iop'jo9'*or)| < - .4/ci , and if j/1(*op,io«,*or)| > x t h e n t h e s a m e h o i d s for 

^(iop^qjor) - ij^(iop,3oQ,kor) Hence we conclude that 

(3.1) |p(<op.iog,*or)| < e x p ( _ j i ) 
Cl 



ч István Járási 

for a certain index. Set c2 = \fi(x°P>io<iMr)^ Then using the inequality |log.r| < 
2\x - 1| holding for |.r - 1| < 0.795, we have 

j log|^(*or,io«,iop)| + ai \0g\u[kor':lQ9'iop)\ + • • • + a n \og\u[k°r'hqAop)\\ -

= jlog|/3^o r ' j o 9 '*o p)/ i^o r , j , o 9 ,*o p) | | < 

< 2 | l — |#(*°r'j°9jo)„(<:orjoc7,top) jl < 

< 2 | l — ft(kor,joq,ioP) „(kor,joq,ioP) I _ 

_ 2|^(x°P'jo9-fcor) (toP.jo9,fcor)j < 

< 2c2exp(-A/d), 

provided that the right hand side is < 0, 795, but in the opposite case we get a 
much better estimate for A. In our example the terms in the above linear form 
in logarithms were linearly independent over Q, so we can apply the estimates of 
Baker and Wiistholz [1] to derive a lower estimate 

|log|/?<*or.io<MoP)| + 0 , j o g | ^ 0 ^ i o p ) | + • • . + «!, 3og|^(f0rj0<7'l0P)|| > 

> exp(-C70 log.4), 

with a large constant C0. This inequality compared with (3.1) implies an upper 
bound -40 for A. In our example we got A0 = 101 0 4 . 

4. LLL reduction of Baker's bound 

For a fixed index (ip, jq, kr) consider the lattice L spanned by the columns of the 
13 by 12 matrix 

0 0 

V c;og| /^*^p) | ciogK(*rJ*'ip)| ciogh' i™*1 ! j 
where the constant C will be specified later. Denote by b\ the first vector of the 
LLL reduced basis of L. Now Lemma 1 of Gaal and Pohst [9] cf. also Gaal [6] 
yields the following: 

l e m m a 1. If A = msix\ah\ < .40 and 

\b1\>Vl3-2n/2Ao 

then for all solutions of the inequality 

| l o g | ^ r ^ P ) | + a i l o g | ^ j ^ P ) | + 

we have 

A < Cl(\ogC-r log(2c2) - log A0 

+ a i i l o g | i / ( ^ a ' í p ) | | < 2 c 2 e x p ( - Л / C l ) 
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Note that one has to perform this reduction for all possible tuples of indices. 
After getting Baker's bound we can use this very efficient lemma to reduce A. One 
should apply the lemma in 4-5 steps, taking the previous bound (initially Baker's 
bound) as AQ. TO ensure the condition of the lemma a suitable choice of the constant 
C is described in Section 7. 

The lemma is very efficient in the first and second steps, when the new bound 
is about the logarithm of the previous one, but after 4-5 steps the new bound will 
not improve the previous one. In our example the final reduced bound was 164. 
The first step was hard to perform, because we had to use 1500 digits of accuracy. 

5= Wildanger's method for the enumeration of the solutions of the 
unit equation 

In this section we use the construction of Gaal and Pohst [9] which is in fact a 
variant of Wildanger's method [14]. Note that in [9] the relative extension is of 
degree n > 3 so in our case we have to use a modified version of Lemma 2 of [9]. 

For all possible tuples I = (ip,jq, kr) set 

e(D — fiipJqM) ? fi(I) _ p(ip,jq,kr) 

and 

UW = „&**») for h = I,...tll 

Let /* = {Li,..., It) be a nonempty set of indices with the following properties: 
1: if (ip,jq,kr) € I* then either (kr,ip,jq) € /* or (kr,jq,ip) € I* 
2: if (ip,jq,kr) 6 1* then either (jq,kr,ip) 6 /* or (jq,ip,'kr) e I* 
3: the vectors 

( l o g l ^ ' l \ 
eh = : for ft = 1 , . . . , 11 

V ' o g l ^ ' l J 
are linearly independent. 

Set 
log|/3(/l)! \ / logl^l 

log|/*<'.>| / V logica l 
Using this notation we have 

6 = 5+ oiei + ••• + One n . 

Let Ar be the reduced bound obtained in the previous section, and let 

(5.1) logSo = maxГ| log|c / | |-+Л r | log| г/í7) | | + • • • + Л r | log| l/
( / ) | |V 

Prom this it is easy to see that 

(5.2) l!-<.l£ ( / )! < 5 0 f o r a l l / € / * 
<^o 
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The following lemma will help us to replace So by a smaller constant in (5.2). Note 
that it is a variant of Lemma 2 of Gaal and Pohst [9], cf. also Gaal [6]: 

Lemma 2 . Let 1 < s < S he given constants and assume that 

4 < l£ ( / )l <$ for all I el* 

Then either 

- < l£ ( / )l < 5 for all I e r 

or there is an I £ I* with 

J ^ - 4 - ï Г Г 
Proof. Note t h a t the proof of Lemma 2 in [9] based on the multiplicative and 
additive relations between the /?^7)-s for which I e I*. In our construction I* is 
defined so that the ^ 7 ) - s for which I € I* have the same properties. D 

Summarizing, the constant S can be replaced by the smaller constant s if for 
each to (1 < to <t) we enumerate directly the set Hto of those exponents a\,... ,au 

for which 

i < IC(/)I < S for all I el* and |£ ( / l°) - 1| < - i -

Such exponent vectors are contained in an ellipsoid. To enumerate the points of 
this ellipsoid we use the algorithm of Fincke and Pohst [3]. This is the critical step 
of the algorithm, for details see [6] and [9]. 

6. Sieving 
As one can see in the last section, the enumeration method gives a very large 
number of exponent vectors ( a i , . . . , a n ) . To reduce this we insert a modular test 
to eliminate as much vectors as possible. 

7. Numerical example 
Using our algorithm we computed all power integral basis in a totally real sextic field 
having a cubic subfield with Galois group S4 x C2. The method was implemented 
in Maple and was executed on a 333MHz Pentium PC. The defining polynomials, 
integral basis and fundamental units were computed by the KANT package [2]. 
Here we summarize our computational experiences. 

Consider the totally real sextic field K — Q(t9) where the minimal polynomial 
of ti is 

x6 - 17x4 4- 25a:3 + 3z 2 - 6 x + l . 

The field has a cubic subfield M = Q(£>) where the minimal polynomial of g is 

x3 - 4x - 1, 

and has Galois group S4 x C2. The g has index 1 in M and {1, g, g2,$, tig, tig2} is an 
integral basis in K. The field £(11,21) - Q(tf(ii) + ^(21)^(11)^(21)) i s g e n e r a t e d by 
0(11)^(21) in this case both ^ ( n ) + ^ ( 2 1 ) and i9(n)^(2 1) generate a field of degree 12, 
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hence they generate the same field. The element tf(-i)-,i(--) has a simpler defining 
polynomial, namely 

x 1 2 + 4 . r 1 1 - 5 0 . r 1 0 - 5 7 x 9 + 3 0 2 x 8 + 3 4 8 x 7 - 4 3 3 x 6 - 4 5 0 a ; 5 + 2 7 8 . r 4 + 1 8 1 x 3 - 8 0 x 2 - 8 x + l 

Baker's method gave the initial bound 4̂o = 1 0 1 0 4 for A which was reduced to 
164, using Lemma 1, by the following steps: 

Step Previous bound Reduced bound C 
I A0 = Ю

1 0 4 
Лi = 2982 4

11 

II Ai = 2982 A2 = 199 

III A2 = 199 A3 = 167 

IV Л
3
 = 167 A4 = 164 4

25 

The first step took about 8.3 hours, and we had to use 1500 digits of accuracy. The 
following steps took only a few minutes, and it was sufficient to use 150 digits of 
accuracy. 

The final reduced bound was 164 and it gave SQ — 1 0 1 6 7 9 for the final enumer
ation (cf. (5.1)). 

For the final enumeration we used the set of 18 ellipsoids defined by 

I* = { ( 2 p , l o , 3 r ) , ( 3 p , l g , 2 r ) , ( l p , 3 g , 2 r ) | (p,q,r) 6 T) 

where (p, q, r) runs through the set 

T = {(1,2,1), (1,1, 2), (2,2,2), (1,2,2), (2,1,2), (2, 2,1)}. 

In the table 1 we summarize the final enumeration using Wildanger's method, 
cf. Lemma 2. We display S, s the approximate number of, exponent vectors 
( a i , . . . ,Oii) enumerated in the 18 ellipsoids, the number of the exponent vectors 
surviving the modular tests and in the last column we display the C P U time. T h e 
last line represents the enumeration of the single ellipsoid containing the exponent 
vectors with coordinates < 3 in absolute value (cf. [9]). 

From the surviving exponent vectors we calculated the coordinates in the basis 
{1» Q> Q2^i^Q,^Q2} of the corresponding elements of K by (2.6) and tested if they 
really generate power integral basis. We got the following solutions: 

(xi,sa,ito,yi,ya) = (0,0,1,0,0), (1,0,7,0,-2). 
We note that if a generates power integral basis, then for arbitrary z £ Z the 
element ±a + z generates also power integral basis. 
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Step S s Enumerated Survived CPU Time 
I 1 0 1679 10löö 0 0 1.5Һ 

II 1 0 ю o Ш 5 0 0 0 O.ЗҺ 

IÏS 1 0 5 0 
• • • 1 0 O.lh 

IV ю20 10 1 5 30 0 O.lh 

V ю15 10 1 2 1300 0 O.lh 

VI ю12 10'° 14200 0 0.2Һ 

VII 1 0 ю J.O9 22700 0 0.2Һ 

V Í Ì I ю9 иŕ 78300 0 0.6Һ 

IX I Í Ѓ - • • 246000 0 1,6Һ 

x ю7 106 650000 0 3.7Һ 

XI 106 5 - Ю 5 366000 0 1.7Һ 

XII 5 • 1 0 5 lü5 1033000 2 4.8Һ 

ЛÌJ.Í 1 0 5 ь • ю4 328000 2 2.7Һ 

XIV 5 - Ю 4 ю4 1971000 1.2 6.5Һ 

XV 104 5-Ю 3 711000 16 2.7Һ 

XVI 5 - Ю 3 103 1688000 28 5 9Һ 

XVII 10 3 5 - Ю 2 500000 42 1.5Һ 

XVIII 5 - Ю 2 Ю2 902000 76 З.ЗҺ 

XIX 102 ю1 278000 149 1,8Һ 

XX 10 l 3 1800 128 0.03Һ 

XXI 3 0 3 

T A B L E 1 

3 O.Olh 
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