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An Apptication of Semi-Infinite Linear Programming: 
Approximation of a Continuous Function by 
a Polynomial 

David Bartl 

Abstract. We investigate the problem of approximation of a continuous func­
tion on a bounded closed interval by a polynomial. We utilise the theory of 
(semi)-infinite linear programming when treating the problem. At the end 
of this paper (in Appendix), the utilised Duality Theorem for infinite linear 
programming is proved. 

1. The problem 
The problem of approximation (in the sense of minimization of the maximal error) 
of a continuous function by polynomial can be formulated as follows: Let n be a 
natural number and let a continuous function f(x) defined on an interval I — (a, b) 
be given. Find a polynomial P(x) of degree < n to minimize the maximal error 
e = m&xX£i\f(x) — P(.c)|. 

We are especially interested in approximation of the function f(x) = 1/(1 — x) 
on the interval I = (0, | ) . We would like to find the best approximative polynomial 
for this function on the given interval I, (Should this be too difficult, it suffices 
to find the minimal value of the error £ = m a x x e / | / ( a ; ) — P(x)\ where P(x) runs 
through the space of all polynomials with real coefficients of degree < n. Or find 
some upper and lower bound for the optimal value of e at least. Cf. [11].) 

We note that the stated problem can have practical applications. It is widely 
known that mathematical co-processors (found in every PC) use approximative 
polynomials to compute the value of most mathematical functions (like s inx, ^/x, 
ex, as well as af""1, etc.). The operation of division a -f b can be implemented as 
multiplication by the reciprocal value, a x & _ 1 , The computer represents the "real" 
number b in the form m- 2e where ra € (1,2) is the mantissa and the integer number 
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e is the exponent. Then b~L = 2m~L • 2-e~L. But I/2m-1 = 1 - x € ( | , l ) for a 
suitable a; G ( 0 , | ) . 

2. Preliminaries and notation 

Let f(x) always denote the function f(x) = 1/(1 — x) and let I always denote 
the interval / = (0, | ) till the end of this paper. Finally, when speaking of a 
polynomial P(x), we shall always mean some polynomial with real coefficients of 
degree < n where n is a given'natural number, also fixed till the end of this paper. 
The purpose of this paper is to try to solve the above stated problem. But we note 
the results obtained here are valid, e.g., for any real continuous function / which is 
defined on a bounded closed interval I and such that for every polynomial P(x) of 
degree < n, the function <p(x) = f(x) — P(x) does not attain more than n local 
extremes inside the interval I. 

If I = (0, l2) is a compact interval, we denote the space of all real continuous 
functions defined on the interval / as Cf. We endow the space with the classical 
max-norm \\<p\\ = maxxG/-\<p(x)\ for any <p E C\. As Ci is a Banach space and the 
polynomials of degree < n form its subspace of finite dimension, it is easy to see 
that for any continuous / G Ci there exists a polynomial P(x) of degree < n so that 
the distance | | / — P|| is minimal. Hence the maximal error e = maxx&i\f(x)—P(x)\ 
attains its minimum value for a suitable polynomial P(x). 

Let P*(x) be (one of) the best polynomial(s) and let e* = maxx€i\f(x)—P*(x)\ 
be the optimal (i.e. minimum) value of the error. Using some specific properties 
(see the second paragraph below) of the function f(x) = 1/(1 — x), we infer that 
the maximal error is attained at exactly n + 2 points 0 = XQ < x\ < • • • < xn < 
xn+i = \ of the interval / = (0, | ) . (We do not know the points however.) Tha t 
is, \f(x) - P*(:r)| = e* if x = xk for k = 0, . . . , n + 1, and \f(x) - P*(x)\ < E* if 
x £ I and x ^ Xk for k = 0, . . . , n + 1. 

We remark that f(x) = 1/(1 — x) = Y2T=o xk- 1* might seem at the first sight 

tha t the polynomial P(x) = ][]j!=o xk could approximate the function f(x) well on 

the given interval / = (0, | ) . But in fact, P(x) is a rather poor approximation. The 

maximal error e = maxx^i\f(x) — P(x)\ is at tained at one point XQ = \ and the 

maximal error i = / ( § ) — P(\) — YltLn+i V^ fc = 2 _ n is far from being minimal. 
Now we are going to justify that in the optimal case, the maximal error e* = 

maxxei\f(x) — P*(x)\ is attained at exactly n + 2 points. It suffices to note that the 
(n + l)-st derivative of <p*(x) = f(x) — P*(x), where f(x) = 1/(1 — x), is positive 
on (—oo,l) D I since the degree of P*(x) is < n. The function <p*(x) has not 
more than n local extremes there, and P*(x) can have n+1 intersections with f(x) 
at most there. So the function <p* (x) has not more than n + 2 local extremes on 
I = (0, | ) — two extremes can be at the end-points of the interval. However, if the 
maximal error were at tained atA; + l < n + 2 points 0 < xo < x\ < • • • < Xk < \ 
on / , then take the polynomial P(x) of degree k < n such that P(xi) = f(xi) for 
i = 0, . . . , k, and consider the convex combination (1 — X)P*(x) + XP(x) for small 
values of A > 0. Then the minimal e* could yet be decreased — a contradiction. It 
follows tha t the maximal error is at tained at exactly n + 2 points of the interval / . 
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We can formulate the stated problem as a problem of semi-infinite linear 
programming: Find the value e and the coefficients a n , . . . , ao of the polyno­
mial P(x) = anx

n + • • • + a\x + ao to minimize e s.t. \f(x) — P(x)\ < e for all 
x £ I = (0, | ) . An equivalent formulation is: 

maximize —e 
s.t. (A) anx

n + --- +a\x + a0 -e < 1/(1 - x), 

(B) - a n a : n a\x - a0 - e < - 1 / ( 1 - a?), ^ 
satisfy both (A) and (B) for all x € (0, ±) . 

We can see that the problem has two sets of constraints, (A) and (B), and that 
the interval I = (0, | ) plays the role of an index set. If we pick up one of the 
constraints, we can say that it is formulated for a certain point x £ I. Two 
constraints are formulated for every x £ I. Given a constraint formulated for a 
certain x £ 7, we shall say that it is of type (A) if and only if it belongs to the set 
(A), and that the constraint is of type (B) if and only if it belongs to the set (B). 

It will be comfortable if we use more compact notation: We shall denote the 
objective function of problem (1) as *yy where 7 = (0 • • • 0 — 1) is an (n + 2)-
component row vector and y = (an ••• ao e)T is a column vector of variables. 
Further, Ay < b will be the common notation for all constraints (of both types 
(A) and (B)) of problem (1). 

We already know tha t (despite the infinite number of constraints) problem (1) 
does have an optimal solution P*(x), £*. We have already showed that the maximal 
error e* is attained at exactly n + 2 points 0 = xo < x\ < • • • < xn < xn+\ = | . 
It is equivalent to say that the respective constraints (either of type (A) or (B) 
formulated for that points) are active at the optimum. Let us denote the n + 2 
active constraints as Aacty < feact-

Let us also determine which of the active constraints are of type (A) and which 
ones are of type (B). We know that the points 0 = xo < x\ < • • • < xn < xn+\ = | 
are precisely those at which the function <p*(x) = f(x) — P*(x) attains its (local, 
but also global) extremes on I = (0, | ) . Obviously, if there is a maximum at a 
point Xki say, then there must be minima at points xk±i- Equivalently, if the active 
constraint formulated for the point xk is of type (B), say, then the active constraints 
formulated for the points xk±\ must be of type (A). 

We also know that P*(x) and f(x) = 1/(1 - x) can have n + 1 intersections on 
(—00,1) at most for the (n + l)-st derivative of <p*(x) = f(x) — P*(x) is positive 
there. On the other hand, they intersect on every (xk,xk+\) for k = 0, . . . , n. It 
follows that P*(xn+\) < f(xn+l) because f(x) —* +00 as x —• 1" , but P*(x) is 
bounded. (Therefore, if P*(xn+1) > f(xn+l), then P*(x) and f(x) would intersect 
once again on (a?Tl+i, 1).) Hence, the active constraint formulated for the point xn+\ 
is of type (B), the active constraint formulated for the point xn is of type (A), the 
active constraint formulated for the point xn-\ is of type (B), etc. 

3. Applying the duality theory 
Theorem 1 . Let X be a real vector space, let aj: X —* R and 7 : X —* M be linear 
functional and let bj be real numbers for j £ J where J is an index set. Let the 
linear programming problem max jx s.t. ctjX < bj for all j £ J possess an optimal 
solution x* £ X. 



Using the Duality Theorem in the backward direction, we conclude that the 
optimal value of the primal problem max jy s.t. Aacty < bact is also equal to — e*. 
As P*(x), £* is the optimal solution of the original problem (1), it also satisfies 
the constraints AHCty < bact of the last primal problem because many constraints 
are dropped. In addition, the optimal value did not change. So P*(x), e* must 
be an optimal solution of the last primal problem as well. But the constraints 
A^y < bact are active at this optimum. If we write them as equalities, then 
P*(x), e* is the unique solution — because the (n + 2) x (n + 2) matrix Aact is 
non-singular — of the problem 

maximize — e 
s.t. crk • anxl + h ak • a\xk + ok • a0 - s = ak • 1/(1 - xk) (4) 

for k = 0, . . . , n + 1 
where <jk = (— l)n~k for k = 0, . . . , n + 1 and the points 0 = XQ < x\ < • • • < xn < 
xn+\ = \ have the same meaning as above. Hence the surprise: We have managed 
to reduce the original semi-infinite problem (1) to the problem of solving a system 
of n + 2 equations with n + 2 unknowns an, . . . , ao, e. The only problem is that 
we do not know the points 0 = XQ < x\ < • • • < xn < xn+\ = \. 

4. A try to solve the problem 
Let us choose the points 0 = XQ < 3t\ < • • • < xn < xn+\ = ^ arbitrarily, substitute 
them into (4) and solve the system. We assert that the obtained solution P(x), e 
satisfies i < e* where e* is the true optimal value of the problem. (Should e > e* 
hold, the functions (p(x) = f(x) — P(x) and (f*(x) = f(x)—P*(x) would intersect at 
n + 1 points at least, and so would the polynomials P(x) and P*(x) of degree < n — 
a contradiction.) 

Obviously, if the solution P(x), e satisfies e < e*, then it can not be a feasible 
solution of the original problem (1) — the optimal value e* would be lower. 

Even the following holds: If e = e*, then the polynomials P(x) and P*(x) are 
the same. (The proof is a rather lengthy exercise and we omit it for that . The main 
idea is that if the polynomials were different, then the functions (p(x) = f(x) — P(x) 
and (f*(x) = f(x) — P*(x) — hence both polynomials of degree < n — would 
intersect at n + 1 points at least.) Therefore, problem (1) possesses exactly one 
optimal solution. 

It follows that we can solve the given problem if, from (4), we express e in 
terms of XQ, ..., xn+\ and minimize it subject to the condition 0 = XQ < x\ < 
• • • < xn < xn+\ = | . The partial derivatives (with respect to x\, ..., xn) must 
be zero at the extreme. If we knew the point x = [x\,..., xn] G R n at which the 
extreme is attained, we could substitute it back into system (4), learn the coefficients 
an, ..., ao of the optimal polynomial P*(x), and learn the optimal value of £ again. 
Although this is a finite-dimensional problem, it is non-linear, and it does not seem 
to offer an easy solution. . . 
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Appendix 

We shall prove Duality Theorem 2 here. If X is a real vector space, then X* denotes 
its algebraic dual, i.e. the space of all linear functionals on X. We endow the 
algebraic dual with the weak* topology a(X*, X). (The concept of weak topologies 
can be found in textbooks on functional analysis. See, e.g., [8, Sections 3, 15, 16].) 

We start with a lemma that generalises Farkas' Lemma [5], which is widely 
known. 

Lemma 3 (Farkas' Lemma). Let X be a real vector space and, J being an index 
set, let aj: X —> K and 7 : X —• K be linear functionals on X. Then the implication 

Vj G J: ajX < 0 =>• 7X < 0 

holds for all x G X if and only if 

7 G cone*{ aj : j G J } 

where cone denotes the weakly* closed (convex) conical hull of the given subset 
ofX*. 

We do not prove the lemma here because it is a simple consequence of Mazur's 
Small Theorem on separation of a point from a closed convex set by a hyperplane. 
The proof of Mazur's Small Theorem can be found in a textbook on functional 
analysis, e.g., [8, Theorem 14.27]. An elementary proof of Mazur's Small Theorem 
for the special case of weak topology (which is sufficient here) can be found in 
[7, Lemma 1]. We note that lemmas very similar to Farkas' Lemma 3, which has 
just been given above, were formulated a long time ago, see [1, Lemma 1] or [7, 
Lemma 2]; the authors just did not mention the relationship between their lemmas 
and Farkas' Lemma. 

Before we proceed, let us mention the following fact. If b G K is a real number, 
then it can be considered as a linear functional on K, i.e. as an element of K*, 
which is the algebraic dual of K. Indeed, we have the liner mapping 11—> tb defined 
for every t G K. Consequently, if a: X —> K is a linear functional on a real vector 
space X and an inequality ax < b is given, then we can interpret it as ax < 16 — 
the linear functional b being evaluated at the point 1 (one). Let us proceed with a 
lemma which is sometimes considered as a variant of Farkas' Lemma. 

Lemma 4 (Lemma on Basic Duality). Let X be a real vector space. Further, let 
for j G J, where J is an index set, aj-.X—>Rbe linear functionals on X and let 
bj G K be real numbers (or let bj: K —> M be linear functionals on R). Then the 
system of inequalities 

otjX < bj for j G J 

has no solution if and only if 

(o - 1 ) e cone*{ (aj bj):jeJ} 

where cone* denotes the weakly* closed (convex) conical hull of the given subset of 
X*xR*. 



Proof. The system of inequalities a3x < b3 for j g J has no solution if and only if 
the implication 

V? 6 J : ot3x - tb3 < 0 -=-=»t-=o2, + t - l - = ( o 1 ) ( ^ ) < 0 

holds for all a; 6 x and for all t £ R (should t > 0 held, then .x/f; would be a 
solution). Farkas' Lemma 3 finishes the proof. Q 

Now we give the Weak Duality Theorem, which we will need in the proof of 
Duality Theorem 2. 

Proposition 5 (Weak Duality Theorem) . Let X be a real vector space and let 
J be an index set. Further, let a3: X —* M. for j £ J and 7 : X —> E be linear 
Junctionals on X, and let b3 G R for j £ J be real numbers (or let b3: M —* K 6e 
linear Junctionals on M.). 

If x £ X satisfies ot3x < b3 for all j £ J (hence, it is a feasible solution of 
primal problem (P) which was stated in Duality Theorem 2 above) and ( 7 z) £ 
cone* { (ojj b3 ) : j G J }, t/ien 

72: < 2 . 

Proof. If (7 z) G cohe*{ (CKJ 6 J ) : j G J }, then (by Farkas' Lemma 3) the impli­
cation 

Vj G J : a3x + tb3 < 0 = > 7a: + ta < 0 

holds for all x G X and for all i e l . Choose t = — 1. It follows 72: < z, which 

finishes the proof. D 

We can prove Duality Theorem 2 now. The proof of Par t I uses an idea which 
is known from the theory of the classical finite-dimensional linear programming, see 
[6, "Lemma 4"]. In fact, Par t I of Duality Theorem 2 which is stated here further 
generalises Haar 's generalisation of Farkas' Lemma ([9, Theorem 6.1], [2], see also 
[3, Theorem 4], [4], [10, § 4.II]). 

Proof of Duality Theorem 2. I. If z* is the finite supremum of problem (P), then 
the implication 

Vj G J : cx3x < bj ===>• 72: < z* 

holds for all x G X. But we shall see that even 

Vj G J : a3x - tb3 < 0 = ^ jx - tz* < 0 

holds for all x G X and for all t G M. If this is true, then Farkas' Lemma 3 will 
finish the proof of Par t I. So it remains to prove the implication for all x G X and 
t G K. We distinguish three cases. 

If t > 0, then the implication is obvious. 
Assume that t = 0 now. Since z* > —00, there exists an x G X such that 

a3x < bj for all j G J. If ot3x < 0 and 72: > 0 held for some x £ X and for all 
j G J, then aj( .r -f Xx) < bj and 7(2; + Xx) > z* for all j £ J and for some large 
A > 0 — a contradiction. 

It remains to show the implication for t < 0. We can assume without loss of 
generality tha t t = — 1. Assume that 0^2: < — bj and 72; > — z* held for some x £ X 
and for all j £ J. Then there would exist a n e > 0 such that 72: > — (z* — e). Since 
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z* is the supremum of the primal problem (P), there would exist an x*e G X such 

that a.jX*E < bj for all j G J and 72;* > z* — e. Hence aj(x + x*) < 0 for all j G J 

and -y(x + x*) > 0. But we already know from above (the case t — 0) that this 

cannot happen. 

Par t I is proved thus. 

II. Note first tha t the primal problem (P) is feasible. Indeed, if the system 

oijX < bj for j G J had no solution, then (o — 1) G cone*{ (CXJ bj) : j G J } by 

Lemma on Basic Duality 4. Consequently, ( 7 z* — t) G cone*{ ( O J bj) : j G J } 

for any £ > 0 and z* could not be the minimum of the dual problem (D) therefore. 

Let z be the supremum of the primal problem (P). As that is feasible, we have 

z > —00. By using the Weak Duality Theorem 5, we have z < z*, so the supremum 

is finite. We can use Par t I, which is already proved. We conclude z = z*, which 

finishes the proof of the theorem. • 
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