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An irreducibility criterion for polynomials in several 
variables 

Marius Cavachi, Marian Vdjditu and Alexandru Zaharescu 

Abstract. For any field K and any polynomial E in les T, X over 

K denote by d e g x E and d e g T E the degree of E as a polynomial in X and 

respectively as a polynomial in T. Write any E E K(T)[X] in the form 

_ op + axX + • • • + adX
d 

q 
with oo, o i , . . . ,ad,q E K[T], ad / 0 and q relatively prime with the greatest 
common divisor of a o , . . . , ad. Then set 

H(E) = max{deg T o o , . . . , d e g T ad, d e g T q}. 

We show tha t for any relatively prime polynomials f,g E K(T)[X] with 

d e g x / < d = degx g, and any irreducible polynomial p E K[T] with d e g T p — 

(d + l)H(f) - 3dH(g) > 0, the polynomial / + pg is irreducible over K(T). 

1. Introduction 

In [1], [3], [4] some results related to Hilbert's irreducibility theorem have been 
provided. A class of irreducible polynomials over a number field K is obtained 
in [1] as follows. Let f(X),g(X) 6 K[X] be relatively prime and assume d e g / < 
degg. Then it is shown that there are only finitely many prime numbers p which 
remain prime in K, for which the polynomial f(X) + pg(X) is reducible. An 
improved version of this result has been obtained in [2], where explicit bounds for 
p in terms of K, f(X) and g(X) are provided, which ensure the irreducibility of 
the polynomial f(X) +pg(X). In the present paper we obtain an irreducibility 
criterion for polynomials in n variables over an arbitrary field K. As we shall se 
below, the result follows immediately from the case n — 2. In this case we denote 
the variables by T and X. We also denote by deg T / and d e g x g the degree of / as 
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a polynomial in T and respectively the degree of g as a polynomial in X , for any 
/ € K[T] and any g _ K(T)[X]. For any F _ K(T)[X], we write F in the form 

_ a0 + a i X + -.- + a_X d , . 
F = , (1) 

with a o , a i , . . . , a_,g £ K[T], ad 7̂  0 and q relatively prime with the greatest 
common divisor of a 0 , . . . , ad. We then set 

H(F) = ,max{deg- a 0 , . . . , degT ad, degT q}. (2) 

We will prove the following result. 

Theorem 1 . Let K be a field and let g G K(T)[X] with degx g = d. For any 
polynomial p _ K[T], irreducible over K, and any f _ K(T)[X] such that d e g x / < 
d, f relatively prime with g in K(T)[X] and d e g T p — (d+ l)H(f) — ?)dH(g) > 0, 
the polynomial f +pg is irreducible over K(T). 

Corollary 1. Let K be a field and let g G K(T)[X] with degx g = d and g irre­
ducible over K(T). For any polynomial p _ K[T], irreducible over K, and any 
f <E K(T)[X] such that d e g x f < d and degTp - (d + l)H(f) - 3dH(g) > 0. the 
polynomial f + pg is irreducible over K(T). 

Theorem 1 above also implies an irreducibility result for polynomials in n 
variables X i , . . . , Xn over K. For any / E K[Xi,..., Xn] and any j _ { 1 , . . . , n} 
denote by d e g x / the degree of / as a polynomial in Xj. For any 

F _ K ( X l 5 . . . , X n _ i ) [ X n ] , 

write F in the form 
_ a0 + a\Xn + ••• + adXi 
F = —^ , 

q 
with ao,a\,... ,ad,q _ K[Xi,...,Xn_i], ad ^ 0 and q relatively prime with the 
greatest common divisor of a 0 , . . •, ad. For any 1 < j < n, set 

Hj(F) = max{deg x . a 0 , . . . , d e g x . ad, deg X i g}. 

Then one has the following result. 

Corollary 2 . Let K be a field, n>2 and g _ K(Xi,..., X n _ i ) [ X n ] with deg X n g = 
d. For any polynomial p _ K[Xi,..., X n _ i ] , irreducible over K, and any f 
in K(X\,..., Xn-\)[Xn] such that d e g x f < d, f relatively prime with g in 
K(X\,...,Xn-\)[Xn]and 

max {degX ; p - (d + l)Hj(f) - 3dHj(g)} > 0, 
l< j<n—1 * 

the polynomial f +pg is irreducible over K(X\,... ,Xn-\). 

If j is the index for which the bound equality holds in the statement of Corol­
lary 2, then one can let the new field K be the field generated by K and the variables 
X i , X2 , . • • ,Xn-\ except for Xj. Writing T for Xj, and X' for Xn, the polynomials 
/ and g are now in K(T)[X], and p is an irreducible polynomial in K[T]. Then 
Corollary 2 follows from Theorem 1. 

In case g is irreducible, Corollary 2 reduces to Corollary 3 below. 
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Corollary 3 . Let K be afield, n>2 andg G K(X\,... ,Xn-\)\Xn], with d e g Y g = d 

and g irreducible over K(X\,... ,Xn-\). For any polynomialp G K\X\,... ,Xn-\], 

irreducible over field K, and any polynomial f in K(X\, . . . , Xn-\)\Xn) such that 

d e g X n f < d and 

max {degx p~(d+l)Hj(f)-3dHj(g)}>0, 
l<j<n—l •' 

the polynomial f + pg is irreducible over K(X\,..., Xn-\). 

The above results provide us with an easy way of producing irreducible poly­

nomials in practice. We end this section with a couple of examples. 

Let K = Q and g = X5 -TX. Thus d = 5 and H(g) = 1. Next, choose 

p = T 1 0 0 + 4006T + 2003. This is an Eisenstein polynomial relative to the prime 

number 2003, and so p is irreducible over Q. Take now any / G Q(T)[X] with 

d e g x / < 4. The condition degTp— (d + l)H(f) — 3dH(g) > 0 from the statement 

of Theorem 1 reduces in our case to the inequality 100 — 6H(f) — 15 > 0, which is 

satisfied provided H(f) < 14. This is the same as saying that / has the form 

a 0 + a\ X + a2X
2 + a3X

3 + aAX
4 

f _ _ , (3) 

where a0,a\,a2,a3,a^ and b are polynomials in T of degree < 14 over Q. Let us 

assume that / has this form. If now a 0 = 0, then / + pg is not irreducible over 

Q(T), being divisible by X. Similarly, if a i = a2 = a 3 = 0 and a 0 = — T<-4, then 

/ + pg is not irreducible over Q(T), being divisible by X4 - T. In any other case, 

/ +pg is irreducible over Q(T) by Theorem 1. 

For a second example, let K — Q, and set g - X5 ~ T. Thus d = 5 and 

H(g) = 1 as before. If we again choose p = T 1 0 0 + 4006T + 2003, we end up 

with the same inequality H(f) < 14. Since 3n this example g is irreducible over 

Q(T), Corollary 1 shows that for any / of the form (3), with a 0 , a i , a 2 , a 3 , a 4 and b 

polynomials in T of degree < 14 over Q, / +pg is irreducible over Q(T). 

2. Proof of Theorem 1 

Let K, g, f and p be as in the statement of the theorem. We start by putting / , g 

and / + pg in the form 

ao + a i X + .-. + a ^ X ^ 1 

/ = » (4) 

(5) 
y i 

an 

f + pg= " U ^ ^ T - T U ^ 
q 

with _o, • •., a d _ i G K\T] not all zero, 6 0 , . . . , bd, u 0 , . . . , u d , g, qu q2 G K[T], 6d ^ 0, 

and such that gi is relatively prime with g.c.d.(bo,... ,bd), q2 is relatively prime 

with g.c.d.(ao,..., a^-i) and q is relatively prime with g.c.d.(u0,..., u d ) . One has 

d e g T q < d e g T q\ + d e g T g2 < H(f) + H(g). (7) 

2 

b0 + b\X + ---+ bdX
d 

9 41 

+ V 
щ + u\X + ••• + udX

d 
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Note also tha t 

ud = ^ 0. (8) 

Let us denote F = u 0 + u i x + - • -+udX
d = q(f+pg) and G = 6 0 + 6 i X + - • -+6 d X d = 

gip. We need to show that F is irreducible over the field K(T). Let us assume that 
F is reducible over K(T). Then one has a factorization 

P = T1T2 (9) 

where Pi = s 0 + * i x H h s m X m , P2 = vo+v\X-\ \-vrX
r, s 0 , . . . , sm, VQ, ..., vr £ 

K[T},sm^0,vr^0. 
Note that smvr = Ud, and from (8) one obtains an equality in K[T], 

qismvr = qpbd ^ 0. (10) 

By our assumption on p, one has that deg T gi < H(g) < d e g T p , so p does not 
divide q\ in the ring K[T]. Since p is a prime element of K[T], it follows that p 
divides sm or p divides vr. To make a choice, let us assume that p divides sm, and 
let z e K[T] be such that sm = pz. Then 

qxzvr = qbd. (11) 

As a consequence of (11), note tha t 

degT vr < deg T q + deg T bd. (12) 

By combining (7) with (12) we see that 

degT vr<H(f) + 2H(g). (13) 

Recall tha t G and F2 are polynomials in X with coefficients in K[T]. We consider 
the resultant R(G,F2) of G and T2- Since / is relatively prime with g, it follows 
that G is relativelv prime with F 2 , and hence R(G,F2) is a nonzero element of 
K[T]. 

At this point we fix a real number 0 < p < 1, and consider the nonarchimedean 
absolute \alue | • | on K[T] given by 

\F\ = p-de^F, (14) 

for any F G K[T]. The absolute value | • | is extended to K(T) by multiplicativity. 

Thus for any L G K(T), L = g , with F, G £ K[T], G ± 0, we have | L | = jgf. Note 

that \z\ > 1 for any 0 -^ 2 e K[T]- In particular one has 

| R ( G , T 2 ) | > 1 . (15) 

Let us choose an extension of | • | to a fixed algebraic closure K(T) of K(T), and 
denote it also by | • |. Next, we estimate \R(G, F2)\ in a different way. We factor G 
and T2 over K(T), 

G = bd(Xn-m)---(Xn~r)d), (iб) 

and 
F2 = vr(Xn- í)---(Xn~ r), (17) 

WІtҺ Г)\, . ..,r)d, i,. .., rєЩfj. Wehave 

R(G,F2) = « П П (Њ- j)^vd

r(~lfr Д Gißi). 
l<i<dl<j<r l<j<r 

(18) 
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For any j G { 1 , . . . , r ) , Oj is a root of F2, and hence it is also a root of F. Therefore 

-(_,) = - - M . (19) 

It follows that 

|G(%)| = |-,-(-.)| = J_M__. (20) 

Since deg T g i < i I (p), we see that 

\qi\<P~H{9)- (21) 

Using (21) in (20), we obtain 

\G(9j)\<
lJ^p~H^\ (22) 

By (18) and (22) we find that 

\vJdo-rH^ -r-T 
i f l (G ,F - ) i<i!_jL-— pi \m)\. (23) 

l<j<r 

The inequality (13) implies that 

b r | < p - W / ) + 2 H ( 9 ) ) . (24) 

Inserting (24) in (23) one has 

\R(G,F2)\<\p\~rp-dH^-(2d+rW^ J ] |/(ty)|. (25) 
l<j<r 

For \f(0j)\ we use the upper bound 

i cm w I a ° + 0 l ^ ' + ' " + a _ - i 0 d - 1 I n_ax0<t<d-i K;0!| 

l/w)l = ' <- rn 
1 _2 i m\ 

< ( ma3_ | - . | ) max{l , l ^ - 1 } < p ~ H ( / ) max{l , | ^ | } d _ 1 . (26) 

Note also that the equality 

o _ /(*,) + „( . , ) = _ _ - + (_=1 + ___) -* -»+. . . + ( _ + S_) 
oi \ g 2 gi / J \</2 g i l 

implies 

b l f e l - < IpMfl ^ m a x { | g - = = i ^ j , I p t . - . ^ - ' | , . . . , | - - | , | p t , | } 

I g2 i J I 92 I 

< max{l , |6>j|d_:L}max{|giad_i|, |p6_._i | , . . . , |gia0 | , |p&d|} 

< max{l , | % | d - 1 } p - j f f ( ^ m a x { | p | , / . - j F f ^ } . (27) 
By the assumption from the statement of the theorem it is clear that 

\p\>p~H{f). (28) 

By (27) and (28) we find that 

| < 9 i |
d < m a x { l , j % | d - 1 } p - i f ^ . 
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Here we either have \0j\ < 1, or, if not, then 

In both cases, one has 

\0j\<p-H(9\ (29) 
for any 1 < j < r. By combining (26) with (29) we derive 

\f(B3)\<p-H{f)-{d-l)H{9K, (30) 

for 1 < j < r. Using (30) in (25) we obtain 

| R ( G , F 2 ) | < | p | - V - ( d + 7 - ) / / ( / ) - d ( r + 2 ) / f ( 5 ) . (31) 

By comparing (31) with (15), we deduce that 

|p| < p-(l+
l)H(f)~-d(l+l)H(g) < p-{d+l)H(f)-3dH{g)^ ^ ) 

Since \p\ = p ~ d e g / p , from (32) one obtains 

deg T p < (d + l)H(f) + UH(g), (33) 

which contradicts the assumption from the statement of the theorem. In conclusion, 
F is irreducible over K(T), and this completes the proof of the theorem. 

A c k n o w l e d g e m e n t . The authors are grateful to the referee for very useful 
comments and suggestions. 
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