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Oscillation and Nonoscillation of First Order 
Nonlinear Delay Differential Equations 

Rudolf Olach 

Abstract. Oscillation and nonoscillation criteria for the first order nonlinear 
delay differential equations of the form 

x(t) + p(t)\x(T(t))\a sgn[x(T(t))} = 0, t > to, 

are established, where a > 1. 

1. Introduction 
In this paper we shall study the oscillatory behaviour of the nonlinear functional 
differential equation 

x(t) +p(t)\x(T(t))\a sgn[x(r(£))] = 0 , t> t0, (1) 

where a > l,p E C([t0, oo), [0.oo)),r e C71([i0,oo), [0,oo)), \\mt-+oo T(t) = oo, 
r(t) <t,t> to- The existence of a positive solution of Eq. (1) is also treated. 

By a solution of Eq. (1) we mean a continuous function x(t) which satisfies 
Eq. (1) on the interval [to, oo)-

Recently the original results have been published in [6] about oscillation and 
nonoscillation of nonlinear differential equation of the form 

m 

*(*) +P(t) I ] W* ~ Tj)|aj sgnM* - ri)] = °» f^ *o, 
j=i 

where 0 < T\ < T2 < • • • < Tm are constants, J2T=i aj > 1> a n ( l &s special case 

x(t) + p(t)\x(t ~ T)\a sgn[x(t - T)] = 0 , t> to, 

where a > l , r > 0. 
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As far as we know there are no results for Eq. (1) on the subject of this paper. 
Due to inequalities 

exp (eet) exp ( - ext) > e x p ( - e A i ) , 0 < e < A, t > 0, 

e ~tlt exp ( - eMt) < exp ( - e^), /x > 0, t > 0, 

Theorems 1 and 2 are extensions of the results in [6] for the equation 

x(t)+p(t)\x{t - n)\asgn[x(t - n ) ] = 0 , a > 1, t > t0 . 

The extension on the equation of the type 

Ht)+p(t) f[ \x(Tj(t))\°" sgn[ .r(n(t))] = 0, J^aj>l,t> t0, 
j= i j= i 

is also possible. Oscillation and nonoscillation problem of cognate equations is also 
treated in [2 5]. 

2. Main Results 

We shall need the following lemma. 

Lemma 1. Suppose that a > 1, q £ C([t0, oo), [0, oo)), q(t) ^ 0 on any interval and 

q(t) < p(t), t > t0 . 

If Eq. (1) has a nonosdilatory solution, then also equation 

x(t) + q(t)\x(T(t))\asgn[x(T(t))} =0, t> t0, (2) 

has a nonos dilatory solution. 

Proof. Assume that v(t) is a nonoscillatory solution of Eq. (1) such tha t 
v(T(t))> 0 on [T ,oo) ,T > t0 . Then 

v(t) = -p(t)[v(T(tW, t>T, 

and 

v(t) < 0 for t > T, 

i.e. v(t) is decreasing on [T, oo). It follows from (1) that 

/
oo 

p(s)[v(T(s))]a ds, t>T. (3) 

By Cioei([T, oo), R) we denote the space of continuous functions x : [Too) —> R 
endowed with the topology of local uniform convergence. We define the set S C 
Ojroc([T, oo), R) of the functions x which satisfy the inequalities 

0 < x(t) < v(t) for t > T. 

The operator F : S -> Cioc([T, oo), R) is defined by 

FMM - / ^ Q(s)[x(T(s))]a ds for t>h, 
r ^ x ^ - \ v ( t ) - v ( t l ) + F(x)(tl) for te[T,h), 

where tx > T is such tha t r(t) > T for t > t i . 
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If x G S, then by (3) we have 

q(s)[x(T(s))}a ds < I p(s)[v(r(s))]a ds < v(t), t>tx. 

Thus we get F(S) C S. We note that 5 is a nonempty closed convex subset 
of Cioc([T, oo),R) and the operator F is continuous. The functions belonging to 
the set F(S) are equicontinuous on every compact subinterval of [T, oo). Then 
according to the Schauder-Tychonoff fixed point theorem (cf., e.g. [1, p. 231]), F 
has an element x E S such that x = F(x). It is easy to see tha t x satisfies Eq. (2) 
on [t\, oo). 

Now we show that x is positive on [ti,oo). Obviously v(t) > v(t\) on [T, t i ) , 
x is nonnegative on [ti,oo), x(t\) = F(x)(t\) > 0 and moreover from Eq. (2) it 
follows that x is decreasing on [£i,oo). Let £2 G ( t i ,oo) be the first point in which 
x(t2) = 0. Then by Eq. (2) we have 

*(ts) = -Q(h)[x(T(t3))]
a < 0, t3 e [t2,oo). 

By decreasing character of x we always have x = 0 on [fo, oo), which gives x(t$) = 0. 
This contradiction proves that x has no zeros on [t2, oo) and so x is positive on 
[ti, oo). The proof is complete. 

Theorem 1. Suppose that a > 1, 0 < f(t) < 1, limmft_+00[£ — r(£)] > a > 0, t/iere 
ea:«sis A > 0 such that 

ae-X(T < 1 (4) 

and 

lim ini[p(t) exp(e£ t) exp(~eA t)] > 0, (5) 

where 0 < e < A. TTien eve?T/ solution of Eq. (1) oscillates. 

Proof. With regard to conditions (4), (5), we may choose £ < (3 < A and 
T > to such that 

a e ~ ^ < 1 (6) 

and due to the condition (5) and the next inequality 

ext_eet >\t+(a-l)ei3t, t>T, 

we obtain 

p(t) > AeAiexp[(a - l)em}, t > T. 

Define 

g ( t ) = A e A t e x p [ ( a - l ) e ^ ] . 

According to Lemma 1, if every solution of the equation 

x(t) + q(t)\x(T(t))\a sgn[x(T(t))} = 0 , t > T, (7) 

oscillates, then also every solution of Eq. (1) oscillates. 
Suppose to the contrary that (7) has a nonoscillatory solution x(t). Without 

loss of generality, we may assume that x(t) is an eventually positive solution of (7). 
Then, with regard to the definition of q(t) we obtain that 

0 < x(r(t)) < 1 and x(t) < 0 for t > Tt > T. 
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Set y(t) = — lnx(t), t >T\. Then y(t) > 0 for t > T\ and has a increasing nature. 
From (7) we get 

y(t) = q(t) exp[y(t) - ay(T(t))}, t > Tx. (8) 

By (6) we may choose 0 < 7 < (3 and 0 < r < a such that 

ae^r < 1. 

Now we can consider three possible cases. 

Case 1. y(t) < aeMj~^ry(T(t)) eventually holds. Let T2 > T be such that 

y(t)<ae{(3-^ry(T(t)), t>T2. 

Then we get 

y(t) aeP-^ry(T(t)) ae^-^'-^y^t)) 
ePt - e0t - e(3t 

Define z(t) = y(t)e~0t. Then for t>T2we have 

z(t) < ae^rz(T(t)). 

In view of this inequality, applying the result of [3, Lemma 2.1] we obtain 

lim z(t) = 0. 
£—>oo 

According to above there exists a T3 > T2 such that 

y(t)<e(3t, t>T3. (9) 

.̂From (8) it follows 

y(t)>q(t)exp[(l-a)y(t)} 

and using (9) we get 

V(t) > q(t) exp[(l - a)e0t} = AeAf, t > T3. 

Integrating the last inequality we obtain 

y(t)>y(T3) + eXt-eX7\ t>T3, 

which contradicts (9). 

Case 2. y(t) > ae^-^yfrty)) eventually holds. Choose T4 > T3 such that 

y(t) >ae{/3~'y')ry(T(t)), t>T4. 

Applying the above inequality in (8) we get 

y(t) > q(t) exp[(l - e^-'3)r)y(t)l t > T4. 

Set e = 1 - e^-0)r. Then c > 0 and 

y(t)e~cy{t) > q(t), t > T4. 

Integrating this inequality we have 
/•OC />0O 1 

/ q(t) dt< y(t)e~cy{t) dt < - e ^ 7 ^ < 00, 

which is a contradiction to the definition of q(t). 
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Case 3. y(t) - aeS0~^ry(T(t)) is oscillatory. Set 

u(t) = y(t)-aeV-i)ry(T(t)). 

Then u(t) is oscillatory and there exists an increasing infinite sequence {tn} of real 
numbers with T4 < ti < t2 < • • • such that 

u ( t n )=0 , n==l ,2 , . . . , 

and 

u(t) > 0 for t £ (t2„-i,*2„), n = l , 2 , . . . . 

Also there exists an increasing infinite sequence {£n}, £n G (£2„-i,t2„) such that 
u(£n) = max{w(t) : t2„-i < t < t2n} and u(fn) = 0, n = 1,2,... . I t follows that 

y(t) = ^(t)expKt) + a(e^-^ ) r - l )y(T(t))] , t>T4, (10) 

i « „ ) = y(en) -ae ( ^^ r f (a )? ) ( r (e n ) ) , 

and 

y(U)-=ae^~^rf(U)y(T(Cn)). (11) 

Combining (10) and (11) we can find that 

g«„)exp[«K„) + a ( e ( ^ ) r - l)y(r(£n))] = « e < ^ ) r t(^)y(r(^)) 

= ae^-^rf(en)t7(T(Cn))exp[K(T(a)) + a ( e ( ^ ) r - l)y(T(T^n)))]. 

Using 

ae-^ r < 1, e^r < ea r , 9(T(£„)) = AeAT(€w) exp[(a - l)e"T«»>] 

and £n > a + T(£„) > r + T(£„), we obtain 

g«n)exp[ti(£n) + a ( e ( ^ ) r - l)y(r«n))] 

< AeAreAr(^) exp[(a - l ) e 0 r ( ^ ) + W(T(^) ) + a (e ( / 3 ~^ - l)y(T(r(.*n)))] 

< Xex^ exp[(a - l)e^n) + U(T(£„)) + a ( e ( ^ ) r - l)y(T(T«n)))]. 

The above inequality implies that 

exp[K(^) + a(e (^^ ) r-l)y(T(Cn))] 

< exp[-(a - l )e*" + (a - l ) ^ - * + «(T(6»)) + a ( e ^ > r - l)y(T(T(£n)))]. 

So we have 

-*(£») + "(e ( /3~7)r - l)y(r«„)) < I*(T«„)) + a(eS?~^)r - l)y(T(T«n))) 
-(a-l)(l~e~Pr)e0^, n = l , 2 , . . . . (12) 

If l imsup^^ u(t) -= limsupn_00 «(£n) = oo, then there exists a subsequence {£nfc} 
of {£n} such that u(£nk) = max{w(t) : T4 < t < £ n J , fe = 1,2,... . Then it follows 
from (12) that 

0 < a ( e ( ^ ) r - l)[y(T(£nJ) - y(T(T(U)))} 

< - ( a - 1)(1 - e~^r)e^"* < 0, k -= 1,2,..., 
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which is a contradiction. If l i m s u p ^ ^ u(t) = l i m s u p n ^ 0 0 u(£n) < oo, then (12) 
implies tha t 

0 < \imsup{u(U + _( e 0--7)r _ l ) [y( r (£ n ) ) - y M ^ ) ) ) ] } 
n—»oo 

< limsup[n(T(^„)) - (a- - 1)(1 - e ^ e ^ " ] = - o o . 

This is a contradiction. The proof is complete. 

Theorem 2. Suppose that a > 1,0" > 0, 

l imsup[ t - r ( / j ) ] < a, (13) 

£/7,ere exists fj, > 0 sue/?, £/m£ 

a e - " * > 1 (14) 

l imsup[p ( t ) e -^ exp(-e l i t ) ] < oo. (15) 
£—>oo 

Then Eq. (1) has an eventually positive solution. 

Proof. According to conditions (13), (14), (15) we may choose u > fi,r > a 
and T > to such that 

ae~ur > 1 

and 

p(t) < ueut exp[(ae~"r - l)ewt] 

< we"1 exp[(ae"-w[ f- r ( i )] - l ) e w ' 

= wew* exp[aeu , T ( ' ) - ew t ] , £ > T. (16) 

We define the set S C Ci0C([T, oo), R) of functions x which satisfy the inequalities 

0 < x(t) < v(t) for t > T, 

where 

v(t) = e x p ( - e w t ) , £ > T . 

The operator F : S -> G.oc([T, oo), H) is defined by 

- W ( r t _ J fp(^Q(^))^ for t>Tu 
r{X)[t)~\v(t)-v(Tl) + F(x)(T1) for te[T,Ti), 

where Tx > T is such that T(£) > T for t > Ti. 
If | e S , then by virtue of (16) we get 

/
oo />00 

p(s)x a (T(s)) ds < j p{s)va(r(s)) ds 

/
oc /«oo 

p(s) e x p t - a e ^ ^ ] ds < I u)eu's exp(-ews) ds 
= e x p ( - e u " ) = v(t), t>Tx. 

Thus F ( S ) C S. Now we can proceed as in the proof of Lemma 1. So Eq. (1) has 
a nonoscillatory solution. The proof is complete. 
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Corollary 1 . Suppose that a > I, a > 0. 

(i) Let liminft_*cc[£ - r(i)] > a, 0 < t(t) < 1 and there exists X > <T_ 1 In a 

such that 

l imini[p(£)exp(-eA ' ) ] > 0. (17) 

t—+0O 

Then every solution of Eq. (1) oscillates. 

(ii) Let l i m s u p ^ o o ^ — r(£)] < a and there exists (i < a"1 In a such that 

l imsup[p(/ ; )exp(-e^)] < oo. (18) 
t—>oo 

Then Eq. (1) has an eventually positive solution. 

Proof. The conditions (17) and (18) imply that (5) and (15) hold and we can 

apply Theorem 1 and 2. 

Applying Corollary 1 to equation 

x(t) +p(t)\x(t - r)\a sgn[x(t - r)] = 0, t > t0, (19) 

where r > 0, we obtain the result in [6, Corollary 1]. 

Corollary 2. Suppose that a > 1. Then the following conclusions hold: 

(i) If there exists A > r _ 1 In a such that (17) holds, then every solution of (19) 

oscillates. 

(ii) If p(t) =£ 0 on any interval of length r and there exists fi < r " 1 In a such 

that (18) holds, then (19) has an eventually positive solution. 
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