Acta Mathematica Universitatis Ostraviensis

Michael Gr. Voskoglou
A note on the simplicity of skew polynomial rings of derivation type

Acta Mathematica Universitatis Ostraviensis, Vol. 12 (2004), No. 1, 61--64

Persistent URL: http://dml.cz/dmlcz/120605

Terms of use:

© University of Ostrava, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A note on the simplicity of skew polynomial rings of derivation type

Michael Gr. Voskoglou

Abstract

In earlier papers we have obtained necessary and sufficient conditions for the simplicity of an iterated skew polynomial ring defined over a ring R with respect to a finite set of derivations of R commuting to each other In the present paper a sufficient condition is obtained for the simplicity of an iterated skew polynomial ring defined over a ring R of characteristic zero with respect to a finite set of derivations of R not necessarily commuting to each other. As an application we construct such a ring over the coordinate ring of the real sphere.

1. Iterated skew polynomial rings of derivation type

All the rings considered in this paper are with identity.
Let R be a ring, and let $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ be a finite set of derivations of R. Consider the set S_{n} of all polynomials in n variables, say $x_{1}, x_{2}, \ldots, x_{n}$ over R. Define addition in S_{n} in the usual way, and define multiplication by the distributive law and by the rules

$$
\begin{equation*}
x_{i} r=r x_{i}+d_{i}(r) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{i} x_{j}=x_{j} x_{i} \tag{2}
\end{equation*}
$$

for all r in R and each $i, j=1,2, \ldots, n$. Then S_{i} is a skew polynomial ring over S_{i-1} for each $i=1,2, \ldots, n$, if, and only if, d_{i} commutes with d_{j} for all $i, j=1,2, \ldots, n$ ([4] ; Theorem 2.2).
The ring constructed above is called an iterated skew polynomial ring of derivation type over R and we shall denote it by $S_{n}=R[x, D]$.

Received: November 26, 2004
2000 Mathematics Subject Classification: Primary 16S36, Secondary 13N15
Key words and phrases: derivations, skew polynomial rings.

Notice that, in order to have that $x_{i} x_{j}=x_{j} x_{i}$, it is necessary that $d_{i} \circ d_{j}=d_{j} \circ d_{i}$ for all $i, j=1,2, \ldots, n$. In fact, given r in R, we have that

$$
\begin{gather*}
x_{i} x_{j} r=x_{i}\left[r x_{j}+d_{j}(r)\right]=\left(x_{i} r\right) x_{j}+x_{i} d_{j}(r)=\left[r x_{i}+d_{i}(r)\right] x_{j}+d_{j}(r) x_{i}+ \\
\left(d_{i} \circ d_{j}\right)(r)=r x_{i} x_{j}+d_{i}(r) x_{j}+d_{j}(r) x_{i}+\left(d_{i} \circ d_{j}\right)(r) \tag{3}
\end{gather*}
$$

In the same way one finds

$$
\begin{equation*}
x_{j} x_{i} r=r x_{j} x_{i}+d_{j}(r) x_{i}+d_{i}(r) x_{j}+\left(d_{j} \circ d_{i}\right)(r), \tag{4}
\end{equation*}
$$

and the result follows by equating the right hand sides of (3) and (4). Further it is easy to check that the above set S_{n} with addition defined in the usual way, and multiplication defined by the distributive law and by the rule (1) is a ring, even if the rule (2) does not hold. For example such kind of rings have been considered by Kishimoto [2].
In order to distinguish between the two cases, we shall denote the ring of the later case by S_{n}^{*}. Obviously in this case we need not to have that $d_{i} \circ d_{j}=d_{j} \circ d_{i}$ for $i, j=1,2, \ldots, n$.

2. Simplicity of S_{n}^{*}.

Let R be a ring and let D be a set of derivations of R, then an ideal I of R is called a D-ideal if $d(I) \subseteq I$ for each d in D , and R is called a D -simple ring if it has not non trivial D ideals. If $D=\{d\}$, then R is called for simplicity a d -simple ring. In [4] and [5] we have obtained necessary and sufficient conditions for the simplicity of $S_{n}=R[x, D]$, where D is a finite set of derivations of R commuting to each other.
In this section, assuming that R is of characteristic zero, we shall obtain a sufficient condition for the simplicity of S_{n}^{*}. Namely we shall prove the following theorem:
2.1. Theorem. Let R be a D-simple ring of characteristic zero, where $D=\left\{d_{1}, d_{2}\right.$, $\left.\ldots, d_{n}\right\}$ is a finite set of derivations of R. Assume further that $d_{i}\left(C\left(S_{i-1}^{*}\right) \cap R\right) \neq 0$, where $C\left(S_{i-1}^{*}\right)$ denotes the center of S_{i-1}^{*} and $S_{0}^{*}=R$ for all $i=1,2, \ldots, n$. Then S_{n}^{*} is a simple ring.

Proof. Assume that S_{n}^{*} is not a simple ring and let I be a nonzero proper ideal of S_{n}^{*}. Denote by k be the least non zero degree with respect to x_{n} of polynomials in I and let $f=\sum_{i=0}^{k} f_{i} x_{n}^{i}$ be such a polynomial, with f_{i} in S_{n-1}^{*} for each $i=0,1, \ldots, k$. Choose a non zeror in $C\left(S_{n-1}\right)^{*} \cap R$ such that $d_{n}(r) \neq 0$, then $f r=f_{k} x_{n}^{k} r+\cdots+$ $f_{1} x_{n} r+f_{0} r=f_{k}\left[\sum_{i=0}^{k}\binom{k}{i} d_{n}^{k}(r) x^{k-i}\right] r+\cdots+f_{1}\left[r x+d_{n}(r)\right] r+f_{0} r=r f+g$, where g is a non zero polynomial having degree less than k with respect to x_{n}. Thus $f r-r f=g$ is in I, a contradiction to the minimality of k . Therefore there exists a polynomial of zero degree with respect to x_{n} in I and so $I_{n-1}=I \cap S_{n-1}^{*}$ is a non zero ideal of S_{n-1}^{*}.
Repeating the same argument one finds that $I_{n-2}=I_{n-1} \cap S_{n-2}^{*}$ is a non zero ideal of S_{n-2}^{*} and so on. Finally, and after n steps, one finds that $I_{0}=I_{1} \cap R=I \cap R$ is a non zero ideal of R.
But, given a non zero t in $I \cap R, d_{i}(t)=x_{i} t-t x_{i}$ is also in $I \cap R$ for each
$i=1,2, \ldots, n$ and therefore, since R is a D-simple ring, $I \cap R=R$. Thus $I=S_{n}^{*}$, a contradiction.

The above theorem gives for $n=1$ the following corollary:
2.2. Corollary. Let R be a d-simple ring of characteristic zero, where d is a derivation of R, such that $d[C(R)] \neq 0$. Then the skew polynomial ring $S=R[x, d]$ is a simple ring.

REMARK: Obviously, if $d_{i}\left(C\left(S_{i-1}^{*}\right) \cap R\right) \neq 0$, then d_{i} is an outer derivation of S_{i-1}^{*}. Thus, if the elements of D commute to each other, then Theorem 2.1 is a weaker form of Theorem 3.4 in [4]. For the same reason Corollary 2.2 is a weaker form of Corollary 3.6 (i) in [4].

3. An application.

In this section, and in order to illustrate Theorem 2.1, we shall construct a simple skew polynomial ring over the coordinate ring $R=\frac{\mathbb{R}[x, y, z]}{x^{2}+y^{2}+z^{2}-1}$ of the real sphere (with \mathbb{R} we denote the field of the real numbers).
For this, observe first that, since there is no derivation d of R such that R is a d-simple ring ([1]; section 3, example (iii)), one cannot construct simple skew polynomial rings in one variable over R ([4]; Corollary 3.6 (i)).
Next, consider the \mathbb{R}-derivations d_{1} and d_{2} of the polynomial ring $\mathbb{R}[x, y, z]$ defined by $d_{1}=(y+z, z-x,-x-y)$ and $d_{2}=\left(y+2 z, x y z-x,-x y^{2}-2 x\right)$ respectively. It is straightforward to check that $d_{1} \circ d_{2} \neq d_{2} \circ d_{1}$. Further, since $d_{i}\left(x^{2}+y^{2}+z^{2}-\right.$ $1)=0$ for $i=1,2, d_{i}$ induces an \mathbb{R}-derivation of R , denoted also by d_{i}. Set $D=\left\{d_{1}, d_{2}\right\}$.Using the above notation we shall prove first the following lemma:
3.1. Lemma. The ring R is a D-simple ring.

Proof. Given F in $\mathbb{R}[x, y, z]$ we shall denote by \bar{F} the image of F in R.
To prove the lemma it suffices to show that R has no no zero prime D-ideals ([3]; Corollary 1.5).
For this, let \bar{P} be a nonzero prime D-ideal of R , then \bar{P} lifts to a prime D-ideal P of $\mathbb{R}[x, y, z]$ containing $x^{2}+y^{2}+z^{2}-1$.
We shall show that z is not in P.
In fact, if z is in P, then $d_{1}(z)=-x-y$ and $d_{2}(z)=-x\left(y^{2}+2\right)$ are also in P. Then, if x is in P, y is also in P and therefore $x^{2}+y^{2}+z^{2}$ is in P, i.e. 1 is in P, a contradiction. Thus $y^{2}+2$ is in P and therefore $d_{1}(y+2)=2 y d_{1}(y)$ is in P. But y is not in P, therefore $d_{1}(y)=z-x$ is in P, i.e. x is in P, a contradiction.
Given \bar{g} in \bar{P}, we can write $\bar{g}=f_{1}(\bar{x}, \bar{y})+\bar{z} f_{2}(\bar{x}, \bar{y})$. Then, if $\bar{f}_{1}=\overline{0}, \bar{z} \bar{f}_{2}$ is in \bar{P}. But z is not in P, therefore f_{2} is in P. Also, if $\bar{f}_{1} \neq \overline{0}$, then $\left(\bar{f}_{1}+\bar{z} \bar{f}_{2}\right)\left(\bar{f}_{1}-\bar{z} \bar{f}_{2}\right)=$ $\bar{f}_{1}^{2}-\bar{z}^{2} \bar{f}_{2}^{2}=\bar{f}_{1}^{2}+\left(\bar{x}^{2}+\bar{y}^{2}-\overline{1}\right) \bar{f}_{2}^{2}$ is in \bar{P}, therefore $f_{1}^{2}+\left(x^{2}+y^{2}-1\right) f_{2}^{2}$ is in P. Thus $Q=P \cap \mathbb{R}[x, y] \neq 0$.
Further, if f is a non zero polynomial in Q, then $d_{2}(f)-d_{1}(f)=z\left\lceil\frac{\partial f}{\partial x}+(x y-1) \frac{\partial f}{\partial y}\right]$ is in P, therefore $\frac{\partial f}{\partial x}+(x y-1) \frac{\partial f}{\partial y}$ is in P.
Consider the \mathbb{R}-derivation d of $\mathbb{R}[x, y]$ defined by $d=(1, x y-1)$. Then the polynomial ring $\mathbb{R}[x]$ is d-simple because it is a PID and d lowers the degree. Further the equation $-1+d(g)=g x(1)$ has no solution g in $\mathbb{R}[x]$ because, if there
exists a polynomial g of degree n in $\mathbb{R}[x]$ satisfying (1), then the degree of $d(g)$ is at most n, a fact which contradicts (1). Thus, by Lemma 3.1 in $[6], \mathbb{R}[x, y]$ is a d simple ring.
Also, for any f in $Q, d(f)=\frac{\partial f}{\partial x}+(x y-1) \frac{\partial f}{\partial y}$ is also in Q. Therefore $Q=0$, a contradiction.

Keeping the same notation we are ready now to prove:
3.2. Theorem. The skew polynomial ring S_{2}^{*} defined over R with respect to D is simple.
Proof. We have that $d_{1}(R) \neq 0$ (e.g. $d_{1}(\bar{x})=\bar{y}+\bar{z} \neq 0$).
Also, by relation (1) of section 1, given r in R, r is in $C\left(S_{1}^{*}\right)$, if, and only if, $d_{1}(r)=0$.
Set $r=\bar{y}-\bar{x}-\bar{z}$, then it is straightforward to check that $d_{1}(r)=0$, while $d_{2}(r) \neq 0$
. Thus the result follows by Theorem 2.1.

References

[1] R. Hart, Derivations on regular local rings of finitely generated type, J. London Math. Soc., 10 (1975), 292-294
[2] K. Kishimoto, On Abelian extensions of rings I, Math. J. Okayama Univ., 14, 159-174, 1969-70
[3] Y. Lequain, Differential simplicity and complete integral closure, Pacific J. Math., 36 (1971), 741-751.
[4] M. G. Voskoglou, Simple skew polynomial rings, Publ. Inst. Math. (Beograd), 37 (51) (1985), 37-41.
[5] M. G. Voskoglou, A note on skew polynomial rings, Publ. Inst. Math. (Beograd), 55 (69) (1994), 23-28.
[6] M. G. Voskoglou, Differential simplicity and dimension of a commutative ring, Riv. Mat. Univ. Parma, (6), 4, 111-119, 2001.

Author(s) Address(es):
Michael Gr. Voskoglou, Technological Educational Institute, School of Technological Applications, 26334 Patras-Greece

