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Časopis pro pěstováni matematiky a fysiky, roč. 72 (1947) 

On the extension of the Jordan-Kronecker's 
^Principle of reduction" for inseparable polynomials* 

Stefan Schwarz, Bratislava. 

(Received January 15th, 1947.) 

In this paper we shall prove two theorems concerning in­
separable polynomials with coefficients in a given field P1). 

Theorem JL Let P be a commutative field of characteristic p9 
which is not perfect. Let f(x) and g(x) be two eventually inseparable 
irreducible polynomials with coefficients in P of degree m and n res­
pectively. Let oc, fi be the roots of f(x) = 0 and g(x) = 0 respectively. 
Let 

f(x) = h{x; W . /,(*; /?)*>«* . . . /,(*; fli* (1) 
g(x) = 9l(x; * ) * * . g2(x; <x)ve'*... g8(x; * ) * * (2) 

be the decompositions of f(x) and g(x) into irreducible factors in Pa = 
= P(/S) and Px = P((%) respectively. Let the degrees of ft(x; /?) and 
gi(x; a) be mi (i = 1, 2, . . . , r) arid n% (i = 1, 2, . . . , s) respectively 
so that the relations 

mxp
e* + m2p

e* + . . . + mrp
er = m, 

nxpP'i + n2pp'* + . . . -f n8p
e's = n, 

are satisfied. 
Under these suppositions the following relations hold: 

i) it is r = 8, 
Tthi m 

ii) by a suitable arrangement of the factors w€ have — = — 
%n± n 

(for every i), 
*) Following a suggestion of prof. Dr. VI. KoHnek, I extend here 

the method applied in my paper „A hyperoomplex proof of the Jordan-
Kronecker's »Principle of reduction«4*, Casopis pro pest. mat. fys., 71 (1946), 
p. 17—20, to inseparable polynomials. 

For another proof of these theorems see: Fr. K. Schmidt, Sitzungs­
berichte d. Heidelb. Akad. d. W., math, naturw. Klasse, 5. Abh., 1925. 
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Hi) by the same arrangement of the factors we have ct- = e\ 
(for every i). 

Proof. We form the hypercomplex system over P 

6 = Pi x P2. 
We have 

e = p, x p2 = p2 + pa* + . . . + p2*—* ^ p2[x] | (f(x)) = 
= PiM I (/i(*; P))p6i • • • (U(x; P))p6r-

On the other hand we have the analogous decomposition 

6 = ?1 x P2 = Px + P ^ + . . . + Pi/?"-1 a* PiM I (?(*)) = 
= Pi[x]\(g1(x;oc))r>e'\.t (g8(x;«))pe's. 

The commutative ring (3 is therefore expressible as a direct 
sum of primary rings2) ~ 

6 = 0X © 0 2 © (Z>3 0 . . . 0 0r, (3) 
where 

' • <fc = P2M I (A(*; W < (» = 1, 2, . . .', r). 
Similarly the second decomposition in primary rings has the 

form 
e = r1©r2©r3© ....@rs, (4) 

where 
Pi =* PiM I (9i(*l «)K* (» = 1, 2, . . . , s). 

Every primary commutative ring is irreducible, i. e. cannot 
be decomposed in the direct sum of two subrings. Further, it is 
well-known: The decomposition of a ring with a unity in two-
sided direct irreducible components is (apart from the order of 
its components) uniquely determined. Comparing the decompo­
sitions (3) and (4) we have therefore: 

i) r = a, 
ii) every &i = F< if the Fi are properly numbered. 
It follows from the last result . 

PiM I iii(*\ P))pH = PiM I (9i (*; *)K' - (*> 
ThQ ring 0* = P(P)[x] \ (U(x; f}))p€i is an algebra of order 

nmipei over P. The unique prime ideal of the ring 0i is the ideal 
m = (U(x; i*)). The exponent of m is peiy i. e. the integer pH is the 
least integer e for which nf is the zero ideal (0): jr<^= (0). The 
ideal m is the radical of 0i. 

Similarly the ring 0'* = P W M | ( ^ ; a ) ) p q i s a n algebra, 
*) Seee.^g.: Van der Waerden, Moderne Algebra II, 1940, p. 42 and 160L 
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over P of order mnip1. The ideal jt\ = (gi(x; <x)) is his unique 
prime ideal and at the same time his radical. The exponent of 
Tt'i is p'\ 

The rings Oi, O'i are isomorphic (the isomorphism leaving P 
invariant). We have therefore 

i) nmi,pei = mnipe {, 
ii) since it is obvious that the isomorphism carries elements 

of the radical of 0* into elements of the radical of 0'*, we have 
also pei = pe{, thus ei = e\ and nmi = rfutii, q. e. d. 

Theorem 2. Let the suppositions of Theorem 1 be satisfied. 
Let us ivrite gi(x; a) in the form of an integral function in a of the 
lowest degree. Then the greatest common divisor of f(x) and gi(f}; x) 
is 

(f(x), gtf; x)) = h(x; p). (6) 

Proof. Let us transform the right side of the isomorphism 

P.M I (/«(*; P)Y" = PiM I Unto «))* . 
Applying the second theorem of isomorphism ((g(x)) is a sub-
modul of the ideal (/(£), gt(x; |)*/i) of the. ring ?[x, £]), wejhave 

PiM ! fata *))pei = P[*. f] I (/(«, H(xi l)"ei) s . 
s* P[x, I] | (g(x)) | (/(I), gi(x;•£)#) | (g(x)) ^ P2[|] | (/(f), ?,(/?; f)*) ~ 

= P 2 M | (/(*), [M/3; *)*'<)• 
Therefore 

P.M I (/.(*; W* ~ P,M I (fix), gm xV% 
Thus we have 

fi(x;Wei=(f(x),gi((i;x)p% 
U(xm =(f(x),gmx)), v 

q. e. d. 
. * 

0 rozsireni Jordan-Kroneckerovho „Principu redukcie" 
na inseparabilne polynomy. 

(Obsah p r e d c h a d z a j u c e h o c lanku. ) 

Obsahom predchadzajucej poznamky je dokaz tychto viet: 
Nech P je nedokonale teleso charakteristiky p. Nech f(x) a 

g(x) su dva ireducibilne, po pripade inseparabilne, polynomy z te-
lesa P stupnov m resp. n. Nech a, ft su korene rovnice f(x) = 0 
resp. g(x) = 0. Nech rozklady f(x) a g(x) v ireducibilnych sucini-



telov v tělese P(/J) resp. P(<x) sú daně vzťahmi (1) a (2). Stupně 
polynomov /<(#;/?), gi(x;<x) nech sú nu resp. nť. Potom platí: 

1. r = 8, 
2. pri vhodnom usporiadaní fáktorov e* === e\-, mni = nm^ 
3. ak píšeme gi(x\ <x) ako celistvú funkciu v <x najnižšieho mož­

ného stupňa je polynom fi(x; /?) daný vzťahom (6). 
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