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Gasopis pro pﬁstovini matematiky a fysiky, ro. 72 (1947)

On the extension of the Jordan-Kronecker’s
»Principle of reduction* for inseparable polynomials.
Stefan Schwarz, Bratislava. '
(Received January -15th, 1947.)

In this paper we shall prove two theorems concerning in-
separable polynomials with coefficients in a given field P1).

Theorem ). Let P be a commutative field of characteristic p,
which s not perfect. Let f(z) and g(x) be two eventually inseparable
trreducible polynomials with coefficients in P of degree m and n res-
pectively. Let «, B be the roots of f(x) = 0 and g(x) = 0 respectively.
Let ’

fx) = fi(@; BYF™ . falz; B)P™ ... fulz; B)P"r, ' (1) .
, (@) = gy(w; &) galw; aP" L gala; 2", (@)
be the decompositions of f(x) and g(x) into irreducible factors in Py =
= P(B) and P, = P(«x) respectively. Let the degrees of fi(z; ) and
gilz; x) bemi 2 =1,2,...,7) and n; 4 = 1,2, ...,8) respectively
8o that the relations . :
' mp + Mep® + ...+ Myp'r = m,
n 't + et 4+ ..+ npts = m,.
are satisfied. . ,
Under these suppositions the following relations hold:
i) itisr=s,
m

1) by. a suitable arrangement of the factors we have p
_ _ N

=0
_ T on
(for every 1),

1) Following a suggestion of prof. Dr. V1. Kofinek, I extend here
the method applied in my paper',,A hypercomplex proof of the Jordan-
Kronecker’s »grinciple of reduction«*, Casopis pro pést. mat. fys., 71 (1946),
p. 17—20, to inseparable polynomials. '

_ For another proof of these theorems see: Fr. K. Schmidt, Sitzungs-
berichte d. Heidelb. Akad. d. W., math. naturw. Klasse, 5. Abh., 1925. "
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~113) by the same arrangement of .the factors we have e; = €';
' (for every 7).

Proof. We form the hypercomplex system over P
S =P, X P,
We have
6=P1XP2—P2+P20‘+ -+ Poam 1 = Pyfa] | (f(=)) =
= Pyfz] | (f1(= )’”el (A CH ) s

On the other hand we have the analogous decomposition

& =Py x Py=Py+ P+ ... + Pyt = Pila] | (g(o) =
= Pz | (alos )" . (s )P

The commutative ring & is therefore expressible as a direct
sum of primary rings?)"
6=¢1®¢2®¢3®---@@n (3)
where :
- @; = Pylx] | (fulz; B (1=1,2, ) 7).
] Similarly the second decomposmon in primary rings has the
form

6_=F1®F2®F3®---.@Ps, (4)

where
I ~ Pl[x] l (91(x; ‘X))pel. (@ = lyl 2, ..., 8).

Every primary commutative ring is irreducible, i. e. cannot
be decomposed in the direct sum of two subrings. Further, it is
well-known: The "decomposition of a ring with a unity in two-
sided direct irreducible components is (apart from the order of
its components) uniquely determined. Comparing the decompo-
sitions (3) and (4) we have therefore:

i) r=s, ‘

ii) every @; = I if the I'; are properly numbered.

It follows from the last result ' ' ;

Palz] | (fi(x; B))P" = P[] | (gs (w5 )P . (5y

The ring 0; = P( )] | (fil=; ) 7% is an algebra of order
nm;p% over P. The unique prime ideal of the ring 0; is the ideal
7; = (fi(x; B)). The exponent of z; is p%, i. e. the integer p% is the

least integer e for which =, is the zero ideal (0): w#*= (0). The
ideal 7; is the radical of 0;.

Similarly the ring 0'; = P(«)[z] | (g4(x; a))p‘ t is an algebra
*2) See e..g.: Van der Waerden, Moderne Algebra II, 1940, p. 42 and 151.
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over P of order mng’ . The ideal a'; = (g:(x; «)) is his unique
prlme 1dea1 and at the same time his radical. The exponent of
7'y is p°t ’

The rings 0;, 0’; are isomorphic (the isomorphism leavmg P
invariant). We have therefore

) nm,-,p"" = mnp° ", '

ii) since it is obvious that the isomorphism carries elements
of the radical of 0; into elements of the radical of 0Q'; i, we have

also p’i = e‘ thus ¢; = ¢'; and nm; = n;, q. e. d.

Theorem 2. Let the suppositions of Theorem 1 be satisfied.
Let us write gi(x; x) in the form of an integral function in « of the
lowest degree. Then the greatest common divisor of f(x) and ¢i(B; x)

is C, . _
(f(x), 9:(B; ®)) = filx; B). (6)
Proof. Let us transform the right side of the isomorphism
Po2] | (filw; B)P™ = P[] | (gilz; &))"

Applying the second theorem of isomorphism ((g(z)) is a sub-
modul of the ideal (f(&), gi(x; £)*"!) of the: ring P[z, £]), welhave

P[] | (gi(z; «))P"* = P[x, &1 | (f(&), gi(x; £)7"F) =~ _
= Plz, &] | (g(x)) | (f(&), gilw;- 8)7°) | (9(x)) == Po[&] ] (F(£), 9i(B; €)P") =
=~ Pylx] I (f(=), gi(B; x)".i)

Paole] | (fi(z; B))P"¢ = Pyfa] | (f(x), gi(B; %)7").

. Thus we have

Therefore

filz; BY"E= (f(x), gi(B; x)?*),
fizB) = (f=), gi(B; ), *
q. e. d.

S%

0 rozsireni Jordan-Kroneckerovho HPrincipu redukeie*
na inseparabilné polynomy.

(Obsah predchiddzajiceho ¢ldnku.)

Obsahom predchadzajiicej poznamky je dokaz tychto viet:
Nech P je nedokonalé teleso charakteristiky p. Nech f(x) a
g(z) st dva ireducibilné, po pripade inseparabilné, polynomy z te-
lesa P stupiiov m resp. n. Nech «, f s korene rovnice f(x) = 0
resp. g(x) = 0. Nech rozklady f(x) a g(x) v ireducibilnych sGdini-



- telov v telese P(8) résp. P(x) st dané vzfahmi (1) a (2). Stupne
polynomov fi(z; f), gi(x; ) nech st m; resp. n;. Potom platf:
l.r=s, . v
2. pri vhodnom usporiadani faktorov e; = e'i, mn; = nm;,
3. ak pfSeme gi(x; «) ako celistv funkciu v « najniZSiecho moz-
ného stupiia je polynom f;(z; f) dany vzfahom (6).

X



		webmaster@dml.cz
	2012-05-16T14:44:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




