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\

On the main theorem of the Minkowski geometry
of numbers. .

Vojtéch Jarnik, Praha.
(Received April 7th 1947.)

In this note all numbers are real. We consider the n-dimensional
space Ry; X = [y, ..., 24}, ¥ = (4, .., Yn] being two points and A
anumber, weput X + ¥ =[x, + %, ..., Tn + ¥a), AX = [A2y, ...,

.y AZ). We always put O = [0, ..., 0]. ‘A set K C R, will be called
an S C. B. (symmetrical convex body) if it is convex, closed, boun-
ded, symmetrical about O and contains at least one interior point.
V( K) always denotes the volume of K; AK denotes the set of all
points AX, where X ¢ K. Let A be an - -dimensional lattice of deter-
minant 1 and let K be an S. C. B. We denote by t(K) (k =1, ..., n)
the ledst positive number 7 such that 7K contains at least k lattioe
points X1, ..., X* which are linearly independent, i. e. there is no
relation }.IXI + ...+ 4XE =0 with |A4)] + ... + |4] > 0. Thus
we have 0 < 7, (K) < 1K) < .. < (K, and K C K’ implies -
1i(K) > 74(K’). A famous theorem of Mmkowskl says that, if K is
an 8. C. B., then ° -

V(K)n 74(K) é 2» C | (1)“.17.:

and so, in particular, _ -

V(K) r,"(K) < 2” . . (2
Thus,nf Kisan S. C. B.and V(K) > 2*, we have 7,(K) < 1,andso K '
contains at least one lattice point-X + O. Many results are known
concerning- (.,), but (1) seems to have been much less studied. In

- this note we give some results concemmg the mequahty (1), chiefly
in the simplest case n =

In the followmg, we put ’ S ;
=33 —tn, e=1—}a. ' (3)

We shall say that a set K C R, belongs to the class g, (g, > 0),if K RS

isan8.C. B. the boundary of which consxsts of a curve having a con- {




tinuous radius of curvature which in none of its points is less than
@i- J. G. van der Corput and H. Davenport!) have proved the follo-
wing theorem: Let /A be a lattice of determinant 1. If K belongs to
the class g, (0o > 0) and if V(K) = 4 — 4dg,?, then K contains
a lattice point other than O (i. e. 7(Ky< 1, 1. e. 7,3(K) < 1). In
order to extend this theorem to the product r,( K) 75(K) it is conve-
nient to give it in another form. Suppose K belongs to the class
o1 (0, >0) and V(K)= 4. Then, if 0 <z < 7,(K), the set?)
(r; — 1) K belongs to the class (7, — %) ¢, and the theorem just
quoterd gives’
4 (1, — )P <4—46(r; — ) o’ < (4
3 (K) < (1+ dg.)~ )
The constant é is the best possible one (example: the circle
2?2 4+ y2 < 47! and the regular hexagonal lattice). It is perhaps
- not without interest to observe that the same inequality (4) holds
also if 7,? is'replaced by 7,7, and that it can even be improved if
Ty < T,. This is shown by the following theorem.

Theorem 1. Let A be a plane lattice of determinant 1, let g, > 0.
Let K be a set of the class o,, let V(K) = 4. Then (puttmg 7(K) = w)
we have

’ T T
1 — 1 2 4 1,2
+ ( Tz) do.® + T, €01

1<
o= (14 dg®) (1 + &0,?)
For 7, = 1,, this is exactly the formula (4). But, for 7; < 75,
(6) is sharper than (4). The right side of (5) is, for 7, < 7,, always"
. less than (1 + dg,%)—? and greater than (1 + eg,%)~? and converges
towards this value for 7,7,~! — 0 (when p, remains fixed).
If we take in particular for K the circle with the radius g, =
=22 ¥ and for A the lattice formed with the points [0, 0], [t105, 0],
Bnoy ] (0< 1 < Aty *) we obtain for 7,7, all values

.of the interval 0 < 7,7,—1 < landitis 737, = (37, + —%ﬂz)}

(5)

-———————l lim.'cr = —~——1 hmrt —.«———l
2 ? 1“2 2 7 12 0.2 :
1+ &gy :: 1 1+ dg; =04 14 &0

‘Thus, though ‘the formula (5) is surely not the best one of its kind,.
) its limiting cases 7,7, — 1 —, 1,7, — 04 are so to say the best

71T >

~ ones, at least for the particular value g, = 27 %

. 1) On Minkowski’s fundamental theorem in the geometry of numbers,
' Nederl. Akad, Wetensch. Proc 49, 701——707 = Indagationes Math. 7,
- 409—415 (1946). _ }
3) Where t, means 7,(K).
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Let us observe that V(K), 7;(K) and the determinant of A are
invariant with regard to homogeneous linear transformations of
determinant 1, while o (the radius of curvature) is not. We can uti-
lize this observation in order to improve our results: K being given,
we may apply a transformation of determinant 1 in order to make p,
. as great as possible; e. g. if K is an ellipse, V(K) = 4, we can treat K

as a circle of area 4, i. e. we can regard K as a curve of the class 2z L

§ 1. Some auxiliary theorems.

Let K C R, be an n-dimensional S. C. B. and let A4 be a lattice
of determinant 1. Write 1; = 1,(K). Then there are n linearly inde-
pendent lattice points Py, P,, ..., Pn such that P; lies on the boun-
dary of 7;:K.3) Denote by M; the :-dimensional subspace of R, con-
taining the points O, Py, ..., P; (1 < 7 < n); let M, be the set con-
31stmg of the single point 0 To every lattice point P =% O thereis an

1 (1 < 7 < n) so that P e M;, Pnon e M;_;; we define then 7(P) =

- 7;. Thus we have ——l_E- PnoneK, if 0 <7< 7(P). All points

—1(11’) P, where P runs over all lattice points other than O, will be

called critical points. We see: no critical point lies in the interior of
K. We now prove the following theorem (theorem and proof similar
to those in v. d. Corput-Davenport, Theorem 1).

Theorem 2. Let K, A, P;, 7;, ©(P) have the meaning just ex-

" platned. Then there is a polyhedron K’ with the following properties:

(¢)K'isan 8.C. B. (it) KC K'. (113) 7y(K') = wi(K) fori = 1,2, ..., n

(tv) Every face of K’ contains at least one critical point in its interior.

. Proof of Theorem 2. K is bounded and contains a neigh.

bourhood of O; so there are evidently two numbers @ > 0, b > 0
with the followmg properties:

(a) If Pis a point on the boundary of K, A a tac-plane ((n — 1)-
dimensional, ,,Stiitzebene*) to K at P, d the distance from O %0 P
and d’ the distance from O to A, then d’ > ad. .

(b) IfLisan S.C.B,,LD K, 7i(L) = 7, fors = 1, ..., n, then L
is contained in the sphere with the centre O and radius b. This fol-
lows easily from the fact that V(L) < 2» (-tl . 7,)~! and that L
contains a fixed neighbourhood of 0. -

We associate with every pair of critical points @, — @ a closed*)

-stripe $(Q) = S(— Q) as follows: The segment OQ has exactly one

) Observe that the followmg considerations are true even if some or -
all the 7; ’s are equal.
4) This means the boundary of the stripe belongs to it.

Cas : o 3.




-, point ¢, in" common with the boundary of K; we construct a tac-. .
plane T to K at @, and construct then two planes T,, Ty through -
' @, —@, parallel to T. Then S(Q) is the stripe between Tl, T,. Let .
e K” be the.common part of all $(@). Evidently K C K”and n(l( ) =
.o = 7(K).%) [Proof: No oritical point lies in the interior of K”, and
S 80 We have: if P is a lattice pomt P e M;, Pnon € M;_,, then T(P) .
i . = 7; and-thus P does not lie in the interior of 7;K".] Following (b),
.. K"is bounded and so it is an S. C. B. Since, following (a), the broadth
- of §(Q) increases indefinitely together with the distance 0Q, we see
that all stripes S(@) but a finite number of them contain the bounded
- set K” in their interior, so that only a finite numbre of these stripes
can have points of K” lying on their boundaries. Thus K” is a poly-
- hedron. If a face of K" contains no critical point in its interior, we
;. move this face, parallell to itself, away from O, carrying out the -
- . corresponding operation on the opposite face. We obtain so a va-
- riable S. C. B. L D K” and, as long as no critical point enters into the
i, interior of L, we have (L) = ;. Following (b) this movement must
" "come to its end, either because the (n — 1)-dimensional volume of
7. the moving face becomes zero or because there appears some critical
T pomt in the interior of this face. After a finite number of such ope-
_.-. rations we come to a polyhedron K’ which satlsfles not only (1), (u),
,_(m) but also (iv).-

Lemma 1. If 7, = L= T, then K’ has at most 2 (2" — 1) faces.

. .Proof (well known). We may suppose 7, = 1, so that the criti- -
~- “cal points are exactly all latice points P = 0. On every pair of

¢ -opposite faces of K’ we ehoose a pair of opposite lattice points
.~ P, — P, each in the interior of the corresponding face. If 2k is the
mimber of faces, we obtain so k lattice points Py, ...; P such that
Py &= 4 P;fori =+ j-and such that every interior pomt of any seg-
ment P.P’; (P’, = — Pj, 1 + j)lies in the interior of K'. It is obvious
that no point }P; is a lattice point (since it lies in the interior of -
_’K') So the points P, ..., P; belong modulo 2 to 2" — 1 classes at
most. Thus, if k > 2" — 1, then there must be two indices ¢, j
‘(¢ = j) such that } (P; — P,) % O is a lattice point. But this point
lies in the interior of K’ — contradiction. -

- -Lemma 2. If n = 2, 7, < vyn Theorem 2, then K’ isa pamllelo-
gram or a hezagon. In the latter case the pomt 7,7 1P, lies in the inte- .
'norotamdeofl(' -

'* " Proof. We can make of the segment OP, the side of a funda- -
menta.l pura.llelogram of the lattice A; we choose the straight line

—

©8) Stnoﬂy speaking (we defined namely the 7i 's,only for bounded sets): -
h K" is the common part of K*with any sphere (with centre at O) eonca.mlg K,

v T‘(K"’) == TI(K)
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OP, for the z-axis of a rectangular system Oz, Oy. If i is the length
of OP,, then evidently the y-coordinate of every lattice point is
a multiplum of A-1. Let y, be the greatest y-coordinate occuring
in K’. As the boundary of K’ contains the points + 7,—'P,,. it is
obvious that K’ contains a parallelogram P the area of which is
© 2271y, Since 7,7, V(K') < 4, we have y, < 2 (1,4)~1; here we
have either P = K’ and K'is a parallelogram or Y, < 2 (12}.)'"1 The
y-coordinate of every critical point, not situated on the z-axis, is
a multiplum of (v,4)—1. Thus, if y, < 2 (734)~?, all critical points

situated on the boundary of K’ above the z-axis, have the same-

y-coordinate, namely (7,4)1, and so there are at most two pairs
of sides of K’ the interior of which contains critical points which are -
not situated on the z-axis. Thus, K’ has either 4 or 6 sides; and, in_
the latter case, two of its sides must contain the critical pomts
"4 7,71P, in their interior.
Lemma 3. Let n = 2, o, > 0; let K belong to the class oy; let
K C Hor K C P where H is a hexagon, P a parallelogram. Then ’
V(K) < V(H) — 460,%
in the former case, )
V(K) < V(P) — 4691 < V(P) — 4d¢;*

tn the latter case. : :
Proof.8) There is a hexagon LCH (m the latter case a para.lle-’- '
logram L C P) such that K is inscribed into L. Let L and M be two-
consecutive points of contact of L and K and let the tangents at L
and M meet at an angle x. We form a rectangular system of coor-
dinate axes Oz, Oy, with the tangent at L as the x-axis. If P =
= [z, y].is any point on the boundary of K between L and M, we
denote by 1l = Uz, y) the length intercepted on the tangent at P
between P and the z-axis. Then the area between the arc.LM and
the tangents at Land Mis -~ o

a=}[Bdp=1 fy sn—tydy;
here, if the radius of curvature is denoted l)y [

d :
| ,% = esin vy f@l sin g dip = 291 sint 3.

-\

Thus

e > 20, f sint 1y . sm—’tp dtp gl (tg izx — }ex)
. Let the angles between the conseeutlve sxdes of the hexagon L be
) Almost htterally the same as in v. d Corput Davenport

.- - . 4.
L : .. ‘ AN




L g g, g, 80 that & + &p + &g = 7 (if L is a parallelogram, we take
o3 = 0). Thus _ - : :

' 8 '
VKRS V(L) — 20%, s =S (tg $ou — dov).
. . : i=1 .
‘Putting & = tg Ja; we have ity + ft, + tt, = 1, whence (t; +
c oty 3)? = 3 (tety 4 it + tty) = 3, and so s > ]/3 — 4n. In the
case of a parallelogram, we have a, = {7 — Ja;, a3 = 0, and so
t’ztl_l,t3=0,8='tl+tl_.l~_i'n%2—%ﬂ. )

§ 2. Proof of Theorem 1.

Let K C R, be a set of the class g,, V(K) = 4. Put 7; = 7;(K)
- (¢ = 1, 2). We construct the hexagon or parallelogram K’ having the
- properties indicated in Theorem 2, Lemma 1 and 2. We have
T V(K) L 4.

R CH D

0 T{ = 7,5, then Lemma 3 .giv'es ‘
A= V(K) S T(K) — 402 < 4 (1)t — 48g7%,
S o 77 < (1 4 dg,2), ) : -
" -which is the sa'met as (5) for iz, = _ .
-~ Thus we may suppose in the following that 7, < 7. If K’ is .
- ‘& parallelogram, then (see Lemma 3) :
o A=V S V(K — deot < 4 (1)t — degy?,

< (1 o) (6)

" and thus (5) holds, :
-~ Thus we may suppose that K’ is a hexagon, and we put 7,K’' =
&= H. Let H be the hexagon ABCA’B'C" (see the figure; we write
. X" = — X). Then (Lemma 2) the point 7,7,~1P, is situated in the
" -interior of a side, say 4AB. Let DD’ be the straight line parallel to -
‘4B through 0. The notation is chosen so that C lies on the same side -




of DD’ as A and B (in an extreme case, we may have C = D,
C’' = D’). H contains in its interior no lattice point which is not
situated on the straight line OP,. The straight lines 4B, A'B’, A'C,
AC’ determine a parallelogramm AGA'G’ which will be denoted by
Q (Q D H). Through the points P,, P’; we construct straight lines
EF, E'F’, parallel to DD’. Denote by S the closed stripe bounded
by the strmght lines EF, E'F'; let H' be the common part of H and
S. Obviously 7;(H') =1 and so V(H) L 4.

We shall distinguish two cases:

(i) C does not lie in the interior of S. Then H’ is a parallelogram,
and clearly V(Q) = 7,7, 1 V(H') < 47,771 But KC K' = 1,—HC
C 7,71Q and so (Lemma 3) -

V(K)< 7,2 V(Q) — 4ep)? 4 < 4 (1y7)t — 4depl?,
which gives again (6); thus (5) holds even in this case. ,

(ii) C lies in the interior of S. Then H’ is a hexagon FECF'E'C’.
Let K be the point of intersection of the straight lines EF, CD. Put
CK:DK=u0(0<axXl), BG:4G =8 (0 < B < 1) Let Q’ be
the parallelogram FKF'K’. Construct a point-L on the segment KF
and a point M on the segment DK such that LK = BG, DM =
= 1,75, 1DC. Denoting by D,, D, the triangles EKC, LEC, by M the
quadrilateral LECM (which degenerates into a trlangle, if C-= D)
and by H” the hexagon FLMF'L'M’ we have obvijously (putting
Ly l=40<i<]) '

V(Q) = 4 V(Q), V(H") = A V(H),
V(Q) — V(H) =2V(Dy), V(H) — V(H") = 2V(M) = 2V(D,).

But

CK KE < ,
2V(0) = V(@) g+ g S V(@) ot
CK EL

2V(Dy) = V(Q 574 > V(H) a2 (1 — ).

. 2DG’ 4G
Hence, putting {af =y 0<y < 1) and observing that V(H') < 4,
we ha,ve

V(H) < AYV(H) — 2V(Dy)), =

VH) L+ (1 — 4) S A1 V(H) < 44, - (@
V(Q )”‘V(H)+2V(D)<V(H)+V(Q')71 '
VQ)(1—yA) S V(H)S 4, v

. V(Q) (1 — yl) < 41 o (8)
But Kc K’ = 1,7 HC T ,—1Q- and s0, by Lemma 3 .
‘ 4(1 ﬁ—Wm+kM<r*W®,
4&i£b—wm+M#<édwm
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Usmg ), _(é) we obtmn .

1 .

. 77e S Min 1T+ (1'_ A) (1 + 8@1?)’ (1— yA) (1 + &0,%) - ®)

= This minimum atteins its greatest value if y is such that

(1471 — )14 8 =(1 — 2) (1 + g,

‘Calculating y and putting it in (9), we obtain (5).

*

K hlavni v&& Minkowského geometrie Eisel.
(Obsah p’f'ede_é_léh'o ¢lanku.)
Budiz K konvexni, omezend, .uzavi'ené, mno#ina v roving, jez

* obsahuje aspoii jeden vnitini bod a je soumérns vzhledem k pocé,t-

. ku; budiz V(K) plocha mnoziny K; budte z,, 7, ,»minima‘ mnoziny

K ve smyslu Minkowského, takze podle zékladni véty Minkowského

jest I V(K) < 4. Hlavnim vysledkem je tato véta: Je-li hranice

mnoZiny K kfivka se spojité se ménicim polomérem kiivosti, jens

- v 24dném bodé kfivky neni men&f neZ jisté kladné ¢&islo oy, plati (5)

(viz té% (3), kde jsou definovana ¢, ¢), jestlize.V(K) = 4.

Mimo to je odvozena jedna véta o symetrickych konvexn.ich

(-.télesech v n-rozmérném prostoru (Theorem 2).
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