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ČASOPIS PRO PĚSTOVANÍ MATEMATIKY A FYSIKY 

ČÁST MATEMATICKÁ 

Topological Representations of Distributive 
Lattices and Brouwerian Logics. 

M. H. Stone (Cambridge, Mass., U. S. A.). 
(Received December 9, 1936.) 

In a series of papers, the writer has developed a theory of 
Boolean algebras dealing with their algebraic structure, their repres
entation by algebras of classes, and their relations to general 
topology.1) It is the object of the present paper to outline an 
extension of the main features of this theory to the more general 
systems known variously as distributive lattices, C-lattices, or 
arithmetic structures.2) 

Erom certain points of view, the theory of distributive lattices 
is of secondary interest compared with that of Boolean algebras. 
Thus the theorem of Mac Neille,8) which states that every distrib
utive lattice can be imbedded by a purely algebraic construction 
in a Boolean algebra, shows that distributive lattices are not signif
icantly more general than Boolean algebras. In addition, the theory 
of distributive lattices gains in generality only at the sacrifice of 
a certain simplicity and symmetry, as we shall see below. Finally,. 
certain parts of the theory do not have even the merit of novelty, 
the theorem that every distributive lattice can be isomorphically 

*) Stone, Proceedings of the National Academy of Sciences, U. S. A., 
20 (1934), pp. 197—202; ibid., 21 (1935), pp. 103—105; American Journal of 
Mathematics, 57 (1935), pp. 703—-732; Transactions of the American Mathe
matical Society, 40 (1936), pp. 37—111; and an unpublished paper, „Appli
cations of the Theory of Boolean Rings to General Topology", which has 
been submitted to the editors of the Transactions of the American Mathe
matical Society. 

2) The term „distributive lattice", which we shall use here, was intro
duced by Mac Neille, Proceedings of the National Academy of Sciences, 
U. S. A., 22 (1936), pp. 45—50; „C-lattice" by Garrett Birkhoff, Proceed
ings of the Cambridge Philosophical Society, 29 (1933), pp. 441—464; 
„arithmetic structure" by Ore, Annals of Mathematics, (2) £6 (1935), 
pp. 406—437. 

8) Mac Neille, Harvard doctoral dissertation, The Theory of Partially 
Ordered Sets, 1935, a summary of which appeared in Proceedings of the 
National Academy of Sciences, U. S. A., 22 (1936), pp, 44—-50. 
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represented by an algebra of classes having been discovered and 
pubHshed by Garrett Birkhoff.4) 

In spite of these considerations, the actual development of 
the present theory serves a useful purpose in providing a mathe
matical background against which the theory of Boolean algebras 
can be more fully appreciated. It also offers a somewhat deeper 
algebraic analysis of the theorems already known. 

The connections between Boolean algebras and classical logic, 
in the symboHc statement of Russell and Whitehead, are well 
known. We may describe them, without too scrupulous a regard 
for detail, by saying that every logical system of propositions can 
be represented by a Boolean algebra. FamiHar evidence in support 
of this statement is found in the use of Leibnitz's diagrams to 
represent the logical relations between propositions. Turning to 
Brpuwerian logic, we are naturaUy led to seek a similar represent
ation. In the second part of the present paper, to which the theory 
of distributive lattices is a necessary preHminary, we shall construct 
such a representation for a Brouwerian system of propositions, 
relying upon the symboHc statement of Heyting.5) The most 
noteworthy feature of this representation is its topological charact
er: whereas the Leibnitz diagrams for classical logic employ classes 
and the usual combinatorial operations upon them, the correspond
ing diagrams for Brouwerian logic employ also certain topological 
operations upon classes. 

Part I. Distributive Lattices. 

§ 1. Definition and Algebraic Properties. A distributive lattice 
(or (7-lattice) has been defined6) as a system with double composition 
(we shall indicate the results of performing the two compositions 
by a v 6 and a . 6 or ab respectively) in which the following rules 
of operation are vaHd: 

(1) a v a = a, aa = a; 
(2) a v b = b v a, ab = ba\ 
(3) a v (b yc) = (a v b) v c, a(bc) = (ab)c; 
(4) ab = a impHes and is implied by a v b = 6; 
(5) a(b v c) = abv ac, ay be = (ay b) (a v c). 

Since these rules of operation bear symmetrically on the two com
positions, every distributive lattice has the foUowing property of 

4) Garrett Birkhoff, Proceedings of the Cambridge Philosophical 
Society, 29 (1933), pp. 441—464, Theorem 25.2. 

6) Heyting, Sitzungsberiehte der Preussisehen Akademie der Wissen-
schaften, Physikalisch-Mathematische Klasse, 1930, pp. 42—56. 

6) Garrett, Birkhoff, Proceedings of the Cambridge Philosophical 
Society, 29 (1933), pp. 441—464; especially pp. 442, 453. 



duality: any rule of operation remains valid under interchange of 
the two fundamental operations. 

To indicate that the elements a and 6 satisfy the equivalent 
relations (4), we shall write a < b or b > a. The relations < and > 
have a number of simple properties which we recall without proof: 
a < a; a < b and b < c imply a < c; a <b and b < a imply 
a = b; ab < a; a < a v 6; a < c and b <d imply ab < cd and 
a v 6 < c v d. 

If a distributive lattice contains an element a such that 
a < x for every element x in the lattice, then this element is 
uniquely determined and will be called the zero-element or zero. 
We shall use the symbol 0 for a zero-element. Similarly, if a dis
tributive lattice contains an element a such that x < a for every 
element x in the lattice, then this element is uniquely determined 
and will be called the unit-element or unit. We shall use the symbol e 
for a unit-element. It is easily seen that a distributive lattice with 
only a finite number of elements a^, . . ,, aw has both a zero and 
a unit: for the elements a±. . . an and ax v . . . v On respectively are 
such. In general, however, a distributive lattice has neither a zero 
nor a unit; but it is possible to adjoin a zero 0 by defining 0 v a = 
= a v 0 = a, aO = Oa = 0, 0 v 0 = 0, 00 = 0, or to adjoin a unit e 
by defining e v a = a v e = e, ae = ea = a, e v e = e, ee = e. 

The systems called generalized Boolean algebras7) are charact
erized among all distributive lattices by the existence of ,,relative 
complements": if a < b, then there exists an element c such that 
a v c = b, ac < x for every element x in the lattice. Similarly, 
Boolean algebras are characterized by the existence of ,,complem
ents": if a is an arbitrary element, then there exists an element af 

such that a v a1 > x, aa' < x for every element x in the lattice. 
From the preceding remarks, we see that a two-element dis

tributive lattice consists of a zero and a unit alone. The two-
element distributive lattices are therefore mutually isomorphic 
Boolean algebras, the typical example being the system consisting 
of two elemets 0 and e with the rules 0 = 0, e = e, 0 #- e, 0 v 0 = 0, 
0 v e = e v 0 = e v e = e, 0 . 0 = Oe =- eO = 0, ee = e, 0 < 0, 
0 < e, e < e, 0' = e, e' = 0. 

§ 2. Ideals. It is convenient to distinguish the following types 
of subsystem in a distributive lattice: 

Definition 1. A non-void subclass a of a distributive lattice A is 
said to be a multiplicative ideal or fi-ideal if 

(1) aea and b ea imply a v b ea\ 
(2) aea and b e A imply ab ea. 
7) Stone, American Journal of Mathematics, 57 (1935), pp. 703—732. 



Dually, a non-void subclass a is said to be an additive ideal or oc-ideal if 

(1) aea and b e A imply a v b e a; 
(2) aea and b ea imply ab e a. 
It is easily seen that the only class a which is both a //-ideal 

and an <%-ideal is the class e consisting of all elements of A: for 
aea and b e A imply a v b ea; and a\/ b ea and b e A then imply 
6 = (a v 6) b e a. 

If g is any non-void subclass of a distributive lattice A, the 
class ap($) of all elements c such that c < axv . . . v a^ for some 
elements al9 . . ., an in il is easily seen to be the least //-ideal cont
aining $: it is a //-ideal, it contains g, and it is contained in every 
//-ideal which contains $. We call â *(3) the //-ideal generated by 3. 
Dually, the class a*(&) of all elements c such that c > ^ . . . an 
for some elements al9 . . ., a* in g is the least a-ideal containing 3. 
We call a«(3) the a-ideal generated by $. When $ consists of a single 
element c, we write a^(c), a«(c) for a^S), a*($) respectively; and call 
these ideals the principal //-ideal and principal a-ideal, respectively 
generated by c. Moreover, if g is the union of a class 21 of //-ideals a, 
we see that a,*(.3) is the class of all elements c such that c = axv 
v . . . v an for some elements ax e ax e 21, . . ., an e an e21. Dually, 
if $ is the union of a class 21 of cx-ideals a, we see that a<*{$) is the 
class of all elements c such that c = ax. . . an for some elements 
&i e ax e 21, . . ., an e an e 21. 

If 21 is any non-void class of //-ideals a, their sum S a is the 
ae2l 

least //-ideal containing every a in 21; and their product P a is 
ae2l 

the greatest //-ideal contained in every a in 21, if such exist. It is 
evident that >} a is the //-ideal generated by the union of the 

classes a in 21 or, alternatively, the product of all //-ideals containing 
every a in 21. Similarly, it is evident that P a must coincide with 

the intersection of the classes a in 21; in particular, the product 
exists if and only if the //-ideals a have a common element. In case 
the distributive lattice A has a zero-element 0, then 0 belongs to 
every //-ideal a in A: for a e a and 0 e A imply 0 = a . 0 e a. I t 
follows that in this case the product of //-ideals is defined without 
restriction. In any case, the product of a finite number of //-ideals 
<*i, . . ., On is defined: for % e ai? . . ., a^e an imply a^ . . . a* e av 
. . . , « ! . . . On e a». Indeed, the product consists of all elements c 
such that c = % . . . a* where a^e<*i, . . . , a»eOn- If a and b are 
//-ideals, it is convenient to denote their sum and product by a v b 



and ah respectively. Dually, we may define the sum and product 
of a-ideals: we have only to repeat the preceding statements replac
ing the term ,,^-ideal" by the term ,,<%-ideal", the element 0 by the 
unit-element e, the combination ab by the combination a v b. For 
the sum and product of two a-ideals a and b we shall write a v b 
and ab respectively. 

Concerning the operations upon ideals, we now have the 
following result: 

Theorem 1. The relations 

(1) a v a = a, aa = a; 
(2) a v b = b v a, ab = ba; 
(3) ab = a if and only if a v b = b or, equivalently, a C b; 
(4) a v (b v c) = (a v b) v c, a(bc) = (ab)c; 
(5) a(b v c) = ab v ac, a v be = (a v b) (a v c); 
(6) if B is a non-void class of non-void classes ^8 of ideals a and 

if <g = £ <33, then 

S(S«) = S«> P(P«) = Pa, 
93eB ae<-3 Cte(g 93«B a«93 0«(2 

6o£& members of the second equation existing if either does; 
(7) if b is an ideal and 93 a non-void class of ideals, then* 

ae<23 ae<33 

AoZd iw the class 3/* 0/ «B fi-ideals in a distributive lattice and also in 
the class 3* of all oc-ideals in a distributive lattice. Under the formation 
of finite sums and products 3,« and 3* are distributive lattices. 

The proof of the relations (1)—(7) in 3/i can be taken almost 
word for word from the proofs of Theorems 15 and 18 of our paper 
,,The Theory of Representations for Boolean Algebras", Trans
actions of the American Mathematical Society, 40 (1936), pp. 
37—111. The proof of the corresponding relations in 3* can then 
be obtained by appropriate dualization. Hence there is no need for 
us to go into detail. 

We have also the following result: 
Theorem 2. The class ^ of all principal fi-ideals in a distributive 

lattice A is isomorphic to A in accordance with the relations 

(1) a^(b) = a^(c) if and only if b = c; 
(2) an(b v c) = a?(b) v ap(c), a^bc) = a?(b) a„(c). • 

Similarly, the class ty* of all principal oc-ideals is dually-isomorphic 
to A in accordance with the relations 



(1) a*(b) = a*(c) if and only if b = c; 
(2) a*(b v c) = a*(b) a*(c), a*(bc) = a*(b) v a*(c). 
It is evident that a^b) is the class of all elements x such that 

x <b. Hence a»(b) = a^(c) if only if c < b, b < c; that is, if and 
only if b = c. Since a; e a?(b) v a^(c) if and only if x < x1 v x2 
where x1 < b and x2 < c, we see that x e a^(b) v a^(c) implies x < 
< b v c, a; e (1̂ (6 v c), while a; e a^(6 v c) implies # = (6 v c) a = 
= (6a;) v (ca;), bx <b, ex < c and hence x e â *(6) v a^c). Hence 
a/i(6 v c) = a„(6) v a^(c). Since x e a^(b) â «(c) if and only if x = â Xj 
where xx < b and a;2 < c, we see that x e ai*(b) a^(c) implies x < be, 
x e af*(bc) while x e a^(6c) implies x = xx < be, x < b, x < c and 
hence x e a»(b) aM(c). Hence a^bc) = a^(b) a^(c). Thus tyj is iso
morphic to A. The discussion of ^ is now obtained by appropriate 
duafization. 

§ 3. Prime and Divisorless Ideals. We shall now consider special 
types of /-e-ideal and of oc-ideal, introduced in two definitions. 

Definition 2. A fx-ideal p is said to be prime if it is a proper 
subclass of the distributive lattice A and if ab ep implies a ep or 
b ep. Similarly, an cx-ideal q is said to be prime if it is a proper 
subclass of A and if aw b eq implies a e q or b e q. 

Definition 3. A \i-ideal p is said to be divisorless if it is a proper 
subclass of A and if, whenever a is a /u-ideal, a Dp implies a = p or 
a = e = A. Similarly an cx-ideal q is said to be divisorless if it is 
a proper subclass of A and if, whenever a is an cx-ideal, a D q implies 
a = q o r a = e = -4. 

The relations between these types of ideal are discussed in 
the following theorems. 

Theorem 3. Every divisorless ideal is prime. 
Let p be a divisorless ^-ideal and let a and b be elements such 

that ah e p. If a is not in p, then the /j-ideal aA1(a) v p contains a and p 
go that aM(a) v p = e, be a?(a) v p. From the latter relation we 
have b < a v x where x e p. Hence we see that b = bb < ab v bx, 
ab ep, bxep. We conclude that b ep. Thus the idealp is prime. The 
case where q is a divisorless <x-ideal is treated dually. 

Theorem 4- / / A is partitioned into disjoint subclasses p and q 
then 

(1) p is a fi-ideal and q an cx-ideal only if both are prime; 
(2) p is a prime fx-ideal if and only if q is a prime cx-ideal. 
If p is a ^-ideal and q an a-ideal, we show that p is prime in the 

following manner: if ab ep, a eq, b e q, then ab e q by the ideal 
property of q; and we have a contradiction to our assumption 
that p and q are disjoint. Similarly, we show by a dual proof that q 
is prime. If p is a prime /i-ideal, then the class q of elements which 



do not belong to p is non-void. If a e q and 6 £ A, then the relation 
a v 6 £ p would lead by the ideal property of p to the contradiction 
a = a(a v 6) ep) hence q contains a v 6 whenever it contains a. 
The fact that p is prime shows that a £ q, 6 £ q imply a& £ p and 
hence a6 £ q. Thus q is an oc-ideal; and, by (1), q must be prime. 
Dually, when q is a prime <%-ideal, the class p of all elements which 
do not belong to q is a prime ^-ideal. 

Theorem 5. If f is a single-valued function defined over a distrib
utive lattice A with values in a two-element distributive lattice consist
ing of the elements 0 and e, then the correspondence a -> f(a) is a 
homomorphism if and only if the classes p and q specified by the 
respective equations f(a) = 0 and f(a) = e are respectively a prime 
)u-ideal and a prime oc-ideal. 

First, let / define a homomorphism. Then p and q are non-void 
— in other words, / assumes both the values 0 and e. Now a ep 
and 6 ep imply f(a v 6) = f(a) v /(6) = 0 v 0 = 0 and hence a v 
v 6 £p; and a ep and b e A imply /(a6) = /(a) /(6) = 0 /(6) = 0 and 
hence ab ep. Also ab ep implies f(a) f(b) = /(o6) = 0, hence f(a) = 
= 0 or /(6) = 0, and hence a e p or 6 e p. Thus p is a prime /j-ideal. 
Theorem 4 now shows that q is a prime <x-ideal. 

Next, let p and q be prime ideals, multi^icative and additive 
respectively. Since the associated function / assumes both values 
0 and e, we show that it defines a homomorphism if we show that 
f(a v 6) = f(a) v /(6), /(a6) = /(a) /(6). Since /(a v 6) = e if and only 
if a v 6 £ q; since a v 6 e q if and only if one of the relations a e q, 
6 £ q is valid; since a e q is equivalent to f(a) = c, 6 £ q to /(&) = e\ 
and since, finally, f(a) V f(b) = e if and only if one of the relations 
/(a).= e, f(b) = e is valid — we see that f(a v 6) = f(a) v /(&) in all 
cases. Since /(a6) = 0 if and only if ab ep] since ab ep ii and only 
if one of the relations a e p} b e p is valid; since a e p is equivalent to 
f(a) = 0, 6 £ p to /(&) = 0; and since, finally, f(a) f(b) = 0 if and 
only if one of the relations f(a) = 0, /(&) = 0 is valid — we see that 
/(a6) = /(a) f(b) in all cases. 

The most important aspect of the theory of prime ideals is 
the proof of their existence in an arbitrary distributive lattice with 
two or more elements. We shall now state a suitable existence 
theorem and give for it two proofs of somewhat different character. 

Theorem 6. If the distributive lattice A contains a p-ideal a and 
an oc-ideal b which are disjoint, then there exists a partition of A into 
a prime fi-ideal p and a prime oc-ideal q such that a C p, b C q. 

Our first proof is essentially due to Garrett Birkhoff8): we 
merely rephrase the original demonstration in the language of 

8) Garrett Birkhoff, Proceedings of the Cambridge Philosophical 
Society, 29 (1933), pp. 441—464, Theorem 21.1. 



ideals. The essential step in the proof of the theorem is this: if a 
and b are given as stated and if they do not together exhaust A, 
we show that there exist a ^u-ideal a* and an a-ideal b* where 
a* D a, b* D b, and a* 4= a or b* 4= b. Once we have justified this 
step, an obvious transfinite induction enables us to form a partition 
of A into a ^-ideal p and an a-ideal q such that a C p, b C <\', and 
Theorem 3 shows that both p and q are prime. It is unnecessary 
for us to describe the inductive construction in detail. If a and b 
together exhaust A, we take a = p, b = q. 

If a and b do not exhaust A, we find the indicated ideals 
a* and b* in the following way. We select an arbitrary element 
c in A which belongs neither to a nor to b. Then there exists no 
pair of elements a, b such that a e a, b eb, c v a eb, and cb e a: 
for otherwise the element 6c v ba = b(cv a) would belong both 
to a and to b. Hence c v a belongs to b for no a in a or cb belongs 
to a for no b in b. If c v a belongs to b for no a in a, we put a* = 
= Mc) v a, b* = b. Since a* D a, a* 4= a, b* D b, we have only 
to prove that a* and b* are disjoint. Now an element b in b = b* 
belongs to a* if and only if 6 < c v a for some element a in a; but 
the relations b eb,b < c v a imply cvaeb, contrary to hypothesis. 
Our discussion is thus complete. On the other hand if cb belongs 
to a for no b in b, ^ e put a* = a, b* = cu(c) v b. Since a* D a, 
b* D b, b* 4= b, we have only to show that a* and b* are disjoint. 
Now an element a in a = a* belongs to b* if and only if a > c6 
for some 6 in b; but then cb e a, contrary to hypothesis. With this 
our first proof is complete. 

Our second proof is based upon Theorem 5: we construct 
a function / defined over, A with the properties 

(1) f(a v b) = f(a) vf(b), f(ab) = f(a) f(b); 
.(2) f(a) = 0 in a, f(a) = e in b. 

We can then take p as the class specified by the equation f(a) = 0, 
q as the class specified by the equation f(a) = e. The construction 
is based upon transfinite induction and is similar to one (for Boolean 
algebras) already in the literature.0) We shall suppress the obvious 
details of the inductive process. For present purposes, it is con
venient for us to replace^ 1) by the equivalent property 

(I') a 1 . . . a m < 6 1 v . . . v 6 l f t implies / (%) . . • /(%) < 
< f{bi) v . . . v f(bn) for m ^ 1, n I> 1. 

As to the equivalence of (1) and (V) we make the following rem
arks. First, if (1) holds, then a1. . . a-* < bx v . . . v 6» implies 
(ai • > • a>m) (&i v . . . v 6n) = % . . . a^, hence (/(a^ . . . f(am)) (f(bt)^ 

f) von Neumann and Stone, Fundamenta Mathematicae, 25 (1935), 
pp. 353—378, Theorem 14. 



v . . . v f(bn)) = /(Ox). . . f(am), and hence f(ax) . . . /(o^) < f(bt) v 
v . . . v /(6n); in other words, (1) implies (1'). On the other hand, 
if (1') holds, then the relations 

ab < a, ab < b, ab < ab, a < a v b, 
b < av b, av b < av b 

imply the respectively corresponding relations 
f(ab)<f(a), f(ab)<f(b), f(a) f(b) < f(ah), 
i(a)<f(avb), f(b)<f(avb), f(a v b) < f(a) v f(b), 

from which we infer the relations (1). 
The basis of the inductive construction is the following result: 

if in any well-ordering of A, the function / has been defined for all 
predecessors of a given element x in such a way that (1') holds 
whenever the elements involved are predecessors of x, then the 
value f(x) can be so determined that (1') holds for x and all its 
predecessors. In proving this result, we have only to examine the 
limitations imposed upon our choice of f(x). On eUminating all 
those conditions which are satisfied by hypothesis or by virtue of 
algebraic identities, we find that the only conditions which are 
not automatically met are 

(3) a±. . . amx < bx v . . . v bn implies /(%). . . f(am) f(x) < 
< /(&i) v . . . v f(bn) for ra :> 0, n I> 1; 

(4) Cj. . . cv < x v dx v . . . v dq implies f(c±). . . f(cp) < f(x) v 
v f(dj v . . . v f(dq) for p = 1, q ^ 0; 

- - where the letters a, b, c, d denote predecessors of x. Now (3) 
restricts our choice of f(x) only if we can find predecessors ax*, . . ., 

,0m*, 6i*", . . ., bn* of x such that ax* . . . Om*x < 6X* v . . . v bn*9 
/(«!*) = . . . = f(am*) = e, f(bx*) = . . . = f(bn*) = 0. In this case 
we can satisfy (3) by putting f(x) = 0 and in no other way. At the 
same time, this choice for f(x) leads to the satisfaction of (4). In 
fact, cx. . . cp < z v ch v• . . . v dq implies 

ax* . . . am*c±. . . cv < bx* v . . . v bn* v ^ v . . . V dq. 
By hypothesis we therefore have /(Oi*) . . . f(am*) f(ct) . . . f(cp) < 
< f(bt*) v . . . v f(bn*) v f(d1) v . . . v f(dq). Remembering that 
f(a*) = . . . = f(am*) = e, f(b,*) = . . . = /(6n*) = f(x) = 0, we 
conclude that f(cx) . . . f(cp) < f(x) v f(dx) v . . . v f(dq). Similarly 
(4) restricts our choice of f(x) only if we can find predecessors 
cx*,.. ., cp*, dj*,. . ., dq* of x such that cx* . . . cP* < x,v d±* v 
v . . . V <V> /K*) - = . . . = - /(<**) = e, fid,*) = . . . = f[d,*) = 0. 
In this case we can satisfy (4) by putting f(x) = e and in no other 
way. At the same time, this choice for f(x) leads to the satisfaction 
of (3). In fact, ax. . . a^x < bx v . . . v bn implies 



ax. . . OnCt* • • • CP* < &i v • • • v bn v dx* v . . . v dq*. 
By hypothesis, we therefore have 

f(<h) • - • /(fl») f(ci*) • • . /(**) < f(W) v . . . v /(6n) v fid,*) v . . . v 
V/W). 

We can then conclude that /(Oj). . . f(om) f(x) < f(bx) v . . . v f(bn). 
We now suppose that A is well-ordered in such a manner that 

the first element following those of a and b is the first element 
belonging neither to a nor to b — in other words, in such a manner 
that the class obtained by uniting a and b is an initial segment of 
the well-ordering. If each of the elements a±, . . ., am, bv . . ., bn 
belongs to a or to b, then the relation ax. . . am < bx v . . . v bn 
implies that some one of %, . . ., am belongs to a or somme one of 
bl9 . . ., bn to b. Thus if we put / = 0 in a and / = e in b, the cond
ition (1') is satisfied for all elements belonging to a or b. Proceeding 
inductively we can define / for all elements in A, beginning with 
the first element following those of a and b, in such a manner that 
(T) is satisfied. The function / so obtained has the properties (1) 
and (2), so that our proof is complete. 

From our existence theorem we can immediately deduce 
a number of important consequences. First we have 

Theorem 7. Every distributive lattice A containing two or more 
elements can be partitioned into a prime [x-ideal p and a prime oc-ideal q. 

If A has two or more elements, it contains elements a and b 
such that the relation a > b is false. If we put a = a»(a) and 
b = a*(b), then a and b have no common element: for c e a, c eb 
would imply c < a, b < c and hence a < b, contrary to hypothesis. 
Applying Theorem 6 to the ideals a and b, we obtain the desired 
partition of A. 

We have further 
Theorem 8. If a and b are distinct fi-ideals, then there exists 

a prime ju-ideal p which contains one but not both of a and b. Dually, 
if a and b are distinct oc-ideals, then there exists a prime oc-ideal q 
which contains one but not noth of a and b. 

When a and b are distinct /j-ideals, we may suppose the 
notation so chosen that b contains an element b not in a. The 
principal a-ideal a*(b) then has no element in common with a: for 
p, e a and a e a*(b) would imply b < a, b s a, contrary to hypothesis. 
We can thus apply Theorem 6 to the ideals a and a*(b), obtaining 
a prime ^-ideal which contains a but not a«(b), 6, or b. The first 
statement is thereby proved. The second, dual statement may be 
left to the reader. 

From Theorem 8 we now draw .the following consequence: 
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Theorem 9. / / the jn-ideal a is distinct from e = A, then a is 
the product of the prime fjt-ideals which contain it. Dually, if the 
oc-ideal a is distinct from e = A, then a is the product of the prime 
oc-ideals which contain it. 

Since the /j-ideal a is contained in, but distinct from, the 
yw-ideal e, there exists a prime ^-ideal which contains a (but not e). 
The product of the prime ^-ideals which contain a is therefore 
defined. It is a ^-ideal b containing a. If a 4= b, there exists a prime 
/i-ideal containing a but not b. Since this is impossible, we have 
a = b, as we wished to prove. The second, dual part of the theorem 
may be left to the reader. 

A fundamental theorem about prime ideals is the following: 
Theorem 10. / / a prime /n-ideal p is connected with the fi-ideals 

a and b by the relation p D ab, then p D a or p D b. Dually, if a prime 
oc-ideal q is connected with the oc-ideals a and b by the relation q D ab, 
then q D a or q D b. 

If p D ab and both relations p D a, p Db are false, we reach 
a contradiction as follows: the elements not in p constitute a prime 
a-ideal q in accordance with Theorem 4; by hypothesis there exist 
elements a and b such that a e a, b eb, a eq, b e q; and hence the 
element ab belongs both to ab C p and to q. The first part of the 
theorem is thus established. The second, dual part may be left to 
the reader. 

§ 4. Adjunction of Zero and Unit Elements. In § 1 we have 
observed that it is always possible to adjoin a zero (or, dually, 
a unit) to a distributive lattice. In the next section we shall find 
it convenient to have precise information concerning the effect of 
such an adjunction upon the ideal structure of a distributive lattice. 
We therefore state the following result: 

Theorem 11. The adjunction of a zero-element 0 to a distributive 
lattice A in the manner described in § 1 alters the ideal structure of A 
only by the adjunction of a prime jbt-ideal contained in every p-ideal 
and the adjunction of a prime oc-ideal containing all oc-ideals other 
than the maximal one. More precisely, the ideal structure of the distrib
utive lattice A* obtained from A by the indicated adjunction is charact
erized as follows: every p-ideal a in A becomes through the adjunction 
of 0 a fji-ideal a* in A*, a* being prime (principal) if and only if a is 
prime (principal); every oc-ideal a in A is an oc-ideal a* in A*, a* being 
prime (principal) in A* if and only if a = A or a is prime in A (if 
and only if a is principal in A); arid the only ideals in A* not so 
obtained are the prime principal (x-ideal generated by 0 and the princ
ipal oc-ideal coinciding with A*. 

If a is a ^a-ideal in A, the adjunction of 0 results in a non-void 
subset a* of A*; and it is readily verified that a* has the algebraic 
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properties of a /j-ideal in A*. Similarly, if a is an a-ideal in A, it is 
a non-void subset a* of A* which has the algebraic properties of an 
(X-ideal in A*. If A is partitioned into a ^-ideal p and an a-ideal q, 
both necessarily prime by Theorem 4, then the corresponding class
es p* and q* constitute a partition of A* into a /j-ideal and an 
a-ideal; thus p* and q* are both prime. We may therefore state 
that the ideal a* obtained from a in the indicated manner is prime 
whenever a is, in accordance with Theorem 4. Is is easily seen 
that a* is principal whenever a is. The principal /j-ideal generated 
in A* by the element 0 consists of the element 0 alone; moreover, 
since it is evident that ab = 0 if and only if a = 0 or 6 = 0, this 
ideal is prime. It follows that the elements of A constitute a prime 
a-ideal in A*, in accordance with Theorem 4. The elements of A* 
constitute an a-ideal in A*, which is maximal in the sense that it 
contains every other oc-ideal in A*; it is the principal oc-ideal gener
ated by 0. 

If a* is a /i-ideal in A* which contains some element other 
than 0, which necessarily belongs to A, the suppression of 0 results 
in a non-void subset a of A] and it is readily verified that a has 
the algebraic properties of a /z-ideal in A. Similarly, if a* is an 
a-ideal in A* which does not contain the element 0, it is a non-void 
subset a of A which has the algebraic properties of an <%-ideal. 
If A* is partitioned into a ^-ideal p* containing some element other 
than 0 and an /i-ideal q*, both necessarily prime by Theorem 4, 
then the corresponding classes p and q constitute a partition of A 
into a /t-ideal and an as-ideal; thus p and q are both prime in accord
ance with Theorem 4. We may therefore state that the ideal a 
obtained from a* in the indicated manner is prime whenever a* is, 
in accordance with Theorem 4. It is easily seen that a is principal 
whenever a* is. 

The two preceding paragraphs show that the ideal structure of 
A* is characterized in terms of that of A in the maimer stated in the 
theorem. Thus, if we regard the ideal structure of A abstractly, we 
find that the only alterations brought about by the adjunction of 
the zero-element are: first, the introduction of the prime /j-ideal 
corresponding to' the ^-ideal generated in A* by 0; second, the 
introduction of the prime #-ideal corresponding to the <%-ideal A 
in A*. The first of these ideals is contained in every /j-ideal, the 
second contains every a-ideal other than the maximal one, corresp
onding to A*. 

§6 . Representations of Distributive Lattices. We shall now 
turn to the construction of isomorphic representations of distrib
utive lattices by algebras of classes. We have 

Theorem 12. The system 3„ of all /i-ideals in a distributive 
lattice A is represented isomorphically by an algebra of subclasses 
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of the class (£ of all prime fi-ideals in A, in accordance with the follow
ing relations: if Q£(a) is the class of all prime /n-ideals p which do not 
contain the \i-ideal a, then 

a) e(S«)= 2 W; 
(2) g(ab) = (£(a) <£(&); 
(3) (£(a) = g(b) if and only if a = b. 

In case A has only one element, 6 is void; but the representation describ
ed is evidently valid even in this case. 

Property (1) is an obvious consequence of the fact that a prime 
/e-ideal p contains § a if and only if it contains every a in <2I. 

Property (2) is a restatement of Theorem 10. Property (3) is simil
arly a restatement of Theorem 8. 

Theorem 13. / / (£(a) is the class (£(a„(a)), then the correspondeTtce 
a-> (£(a) defines an isomorphic representation of the distributive 
lattice A in accordance with the relations 

(1) <£(av 6) = <£(a)U (£(&); 
(2) <g(a6) = <g(a) <£(&); 
(3) <£(a) = <g(6) if and only if a = b. 

Furthermore, if a is any p-ideal, then 

(4) <£(<,) = 2 < S ( a ) -
aea 

Properties (1), (2), (3) follow from the corresponding properties 
of Theorem 12 with the help of Theorem 2. Property (4) is an 
immediate consequence of Theorem 12 (1) and the obvious relation 
a -= S <U«). 

aea 
From Theorem 11, we can immediately read off the effect of 

the adjunction of a zero-element upon the representation described 
in Theorems 12 and 13. We have: 

Theorem 14. / / the distributive lattice A* is obtained from A by 
the adjunction of a zero-element, then its class-representation can be 
obtained from that of A by adjoining a single point to S and each of 
the classes £(a) and including the void class with the classes so obtained. 

In view of the simple relations disclosed in Theorems 11 and 
14, we may henceforth confine our attention to distributive lattices 
with zeros: we are able to adjoin a zero to any distributive lattice 
which has no zero; and we do not thereby make any complicated 
alterations in the ideal structure or its class-representation. On the 
other hand, if we attempt to consider the general case, the theorems 
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which follow become needlessly complicated through the intrusion 
of slight but unavoidable exceptions. For these reasons we make the 
restriction to the indicated special case. 

We now proceed to the introduction of topological concepts. 
Theorem 15. If A has a zero, the class E of all sets 6(a) described 

in Theorem 12 may be taken as the class of all open sets in a certain 
wftiquely determined topology for (£. In this topology Q£ is a T0-space 
in which the sets (£(a) constitute a basis. The sets (f (a) are characterized 
topologically as the relatively bicompact10) open sets in (£. The space (£ 
has the following topological properties: if B is the class of all relatively 
bicompact open sets in (£, then 

(1) B is a basis for (£; 
(2) B is a multiplicative class — that is, contains the intersection 

of any two of its members; 
(3) if ^ is any closed set and if C is any subclass of B such that 

d e C, . . . , <E* e C imply ft^ . - .<£, 4= 9 , then ^Yl^ + *). 

Since E contains the void set 9 = (£(0), the set (£ = Q£(A), 
the union of any subclass of its sets (by Theorem 12 (1)), and the 
intersection of any finite subclass of its sets (by Theorem 12 (2)), 
there exists a topology in (£ such that E is the class of all open 
sets; and in this topology ® is a jP-space.11) We can show that £ is 
in fact a jT0-space: if p± and p2 are distinct points in S, we consider 
them as prime ^-ideals in A and note that at least one of them does 
not contain the other; we thus infer that S(pi) does not contain pl9 
(£(p2) does not contain p2r but that £(pi) contains p2 or (£(p2) cont
ains px; and we therefore conclude that one of the two points px 
and p2 is contained in an open set which does not contain the other. 
Theorem 13 (4) shows that the sets €(a) constitute a basis for (£. 
To prove that every set (£(a) is relatively bicompact as well as open, 
we proceed as follows: if a family of open sets S(a), a e2I, covers 
6(a), (£(a) C 2 (£(a), ^ e n Theorem 12(1) shows that a g § a; 

hence, as we have seen in § 2, the relations a — ax v . . . v a^, 
a^ e ax e 21, . . ., an e a» e 51 can be satisfied; and it follows from 
Theorem 13 that 

6(a) == g f o j u . . .U (8(0,) C <E(ai)U . . .U 6(0n), 
10) We shall say that a subset of a topological space is relatively bi

compact if, whenever it is covered by a family of open sets, it is also covered 
by some finite subfamily. 

-1) Alexandroff and Hopf, Topologie I (Berlin, 1935), Kap. I, §2, 
Satz X, p. 44. 
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as we wished to prove. On the other hand, if the open set (£(a) 
is relatively bicompact, the relation (4) of Theorem 13 becomes 
(g(a) = (£(ai) U. . .U <£{an) for suitable elements av . . ., an in a; 
and thus (£(a) = (£(«i v . . . v an) in accordance with Theorem 13 (1). 
From what we have already proved, we see that the class B of all 
relatively bicompact open sets in € has the properties (1) and (2) 
asserted in the present theorem. To establish property (3) we 
proceed as follows. Let ^ a n ( i C be as described there. Then <J is 
certainly a non-void closed set. Its open complement we denote by 
6(a). By hypothesis, the relations (£i e C, . . ., (£w £ C, (£x . . . (£n C 
C €(a) are incompatible; in other words, if c is the class of all 
elements c in A such that (f (c) = £ e C , the relations cx e c, . . ., 
cnec, cx. . . cn e a are incompatible, by virtue of Theorem 13 (2). 
If b is the a-ideal generated by c — namely, the class of all elements b 
such that cx. . . cn < b for cl3 . . ., cn in c — then b has no element in 
common with a. According to Theorem 6, there exists a prime 
/j-ideal p which contains a but is disjoint from f> (and hence also 
from c). It follows that p belongs to $ = €'(<0 and to (£(c), cec . 
Hence p belongs to r5]~I £, as we wished to prove. 

We shall now invert the results obtained in Theorems 12, 13 
and 15 — that is to say, we shall show that the topological properties 
set forth in Theorem 15 characterize the representations of distri
butive lattices obtained in Theorems 12 and 13. 

Theorem 16. Let Qbea T0-space in which the class B of relatively 
bicompact open sets has the properties (1)—(3) of the preceding 
theorem. Then the sets in B constitute a distributive lattice A under 
the operations of forming finite unions and intersections. The algebra 
of all open sets in S is isomorphic to thai of the /z-ideals in A under the 
correspondence a-> S(a) = 2 a* ?f P ™ any W^^ ft-ideal, there 

aea 

exists a unique point $ in © such thatQ(p) = {$}""'; and the resulting 
correspondence p-> g defines a topological equivalence between the 
given space Q and the space 6 constructed from A in the manner 
described in Theorems 12 and 15. 

If 931 a n ( i 932 a r e relatively bicompact open sets, then so 
is their union: if a family of opien sets covers 93i U ^&^ then there 
exist finite subfamilies which cover 93x and ^ separating, so that 
the union of these two subfamilies is a subfamily covering ^1UC232; 
hence 93iU932J which is known to be open, is relatively bicompact 
as well. The intersection of relatively bicompact open sets 93i 
and Q32 is, of course, open and is here relatively bicompact by 
assumption. Thus the sets in B constitute a distributive lattice 
A, as stated in the theorem. For convenience in comparing the 

15 



present analysis with previous results we shall denote the elements 
of this lattice by the letters a, b, c, . . . 

If now a is any ju-ideal in A, we may associate with it the open 
set S(a) = 2 a in S . We can show at once that S(a) C S(b) 

a*a 
implies a C b: if a is any element in a, we have a = S(a«(a)) C 
C S(a) C S(b) = 2 b; hence there exist elements 6lf . . ., bn in b 

b*b 
such that a < bt v . . . v bn in accordance with the relative bicomp-
actness of a; and we thus see that a ea implies a e b. It follows that 
S(a) = S(b) if and only if a = b. If © is an arbitrary open set 
in S , the class of all sets in B which are contained in © is obviously a 
/j-ideal a in A such that © = S(a) in accordance with our assumpt
ion that B is a basis for S . 

We can now investigate the nature of the set S(J>) when p is 
a prime /J-ideal. The class q of all elements in A which do not belong 
to p is a prime a-ideal in accordance with Theorem 4. Thus the 
closed set <$ = S'(J>) and the subclass q of A and B have the prop
erty that a± e q, . . ., On e q imply Q ^ . . . an ={= O: for ax. . . an C 
Q cj ' = Q(p) would imply % . . . an ep in contradiction to the 
known relation a^. . . On e q. By hypothesis, we can therefore 
conclude that $ contains a point 3 common to all the members of q. 
We thus see that the partition of B into the ideals p and q coincides 
with the partition of B into the class of all its members which do not 
contain 3 and the class of all its members which do contain $. 
Since B is a basis for S , we infer that S(J>) = {$}""'. On the other 
hand, if g is an arbitrary point in S , we can form a partition of B 
into the class p of all its members which do not contain 3 and the 
class q of all its members which do contain g. Since B is a basis for 
the .ro-space S , neither class is void; and it is easily verified that p 
is a /j-ideal, q an ac-ideal. Theorem 4 shows that both p and q are 
prime. It is evident that S(p) = {3}"""'̂  If J>i and p2 are prime 
/j-ideals and if S(pi) = {3i}"~', S(j>2) = {^2}""', then the relations 
px = p2 and $x = $2 are equivalent: for the relations pt = p2, 
S(£i) = Svt>2)> {$i}~~ ^ {̂ 2}"" a r e equivalent; and in the T0-space S , 
the third relation here is equivalent to gx = 32. Thus the correspond
ence p -r> $ resulting from the relation S(p) = {$}""""' is a biunivocal 
correspondence between (E and S . Furthermore, if p -> $ in this 
correspondence, we see that p e (£(a) if and only if £ s a: for p e <&(a) 
is equivalent to a non e p; and the latter relation is equivalent to $ e a 
by virtue of the preceding analysis of the relation Q(p) = {$}~'/. 
Thus the correspondence between (£ and 'S carries the basis of all 
sets (£(a) into the basis B of all sets a. It is therefore a topological 
equivalence between (£ and S . 
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I t is now evident that this correspondence carries the open sets 
6(a) and S(a) , associated with a /x-ideal a in A, into one another. 
The remaining statements of the present theorem then follow from 
the properties of the sets 6(a) established in Theorem 12. 

We may remark in closing tha t the void class © belongs to 
B and is the zero-element of the distributive lattice A. 

The reader who wishes to investigate what occurs in Theorems 
15 and 16 if the condition of the existence of a zero-element be 
relaxed should now have no difficulty in doing so. The study of 
a distributive lattice without zero is carried out most simply by 
adjoining a zero-element as previously described and later removing 
the appropriate point from the representative space constructed 
for the enlarged lattice, as we have already suggested in Theorem 14. 

I t is interesting to consider certain specializations of the 
results of Theorem 15. We first have 

Theorem 17. The space 6 of Theorem 15 is a T-space if and 
only if every prime p-ideal in the distributive lattice A is divisorless. 

From Theorems 15 and 16 it is evident tha t 6(p) = {p}~~' 
whenever p is a prime //-ideal. In order tha t 6 be a T^-space it is 
necessary and sufficient tha t {p}~ = {p} for every point p in 6 . 
Thus, if 6 is a .TVspace, we have 6(p) = {p}' for every prime 
/*-ideal p. Consequently a //-ideal a which contains p must have 
the property tha t 6(a) = 6(p) or 6(a) == 6 . Hence a D p implies 
a = p or a = e = -4. Consequently, every prime //-ideal in A is 
divisorless. On the other hand, if 6 is not a jTi-space, we can 
find prime //-ideals pl9 p2 such that px 4= p2, px e {p2}~. I t follows 
tha t { h } - C {£2}~"> <£(Pi) 3 ^(frs)* Pi 3 £2- T h u s t h e prime //-ideal 
p2 is not divisorless. The theorem is thereby established. We 
recall tha t it was proved in Theorem 3 tha t every divisorless ideal 
is prime. 

A more interesting result is the following: 

Theorem 18. The space Q. of Theorem 15 is an H-space if and 
only if the distributive lattice A is a generalized Boolean algebra. 

I n an .ff-space every relatively bicompact subset is closed.12) 
Thus if 6 is an jff-space and if a < 6, the sets (£(a) and (£'(a) 6(6), 
contained in (£ (6), are open and closed in 6 and hence open and 
closed relative to (£(&). Since 6'(a) 6(6) is closed relative to the relat
ively bicompact set 6(6), it is also relatively bicompact. Conse
quently, 6 '(a) 6(6) = 6(c) where ceA. We have thus proved that , 
whenever a < 6, the system of equations x v a = 6, xa = 0 has 

12) Alexandroff and Hopf, Topologie I (Berlin, 1935), Kap. I I , § 1, 
Satz XI , p . 91. 
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a solution in A, namely, the element c just constructed. Thus A is 
a generalized Boolean algebra. On the other hand, if A is a gener
alized Boolean algebra and px and p2 are distinct prime /^-ideals 
in A, we may suppose, since 6 is a T0-space, that there exist elem
ents Ox and b2 in A such that px e (£(%), p2 e Ql{b2)

 an(* P i n o n £ S(62)
 o r 

p2 non e (£(G&I). By proper choice of notation, we may arrange that 
p2 non e (&{ax). Then, if a2 is a solution of the system of equations 
x v axb2 = b2, x{axb2) = 0 where axb2 < b2, we see that .pi e (£(at), 
fonon e S(a2), (£(«!) (S(t^) = O. Hence (£ is an £f-space. 

We may remark that, when (£ is an iZ-space, the conditions (2) 
and (3) of Theorem 15 are redundant.13) In other words, the 
representative topological spaces for generalized Boolean algebras 
are characterized as those .ff-spaces in which B is a basis. 

Theorem 18 shows how greatly simplified the theory of distrib
utive lattices becomes in the case of generalized Boolean algebras 
and emphasizes the special importance of the latter from a topolog
ical point of view. 

§ 6. Applications to General Topology. In . concluding our 
discussion of distributive lattices, we may make a few remarks on 
the application of the representation theory to the study of general 
topological spaces. 

If B is any basis in a jP0-space Q, we can form the class A of 
all sets obtained from those of B by the application of the operations 
of forming finite unions and intersections. Then A is a basis for S 
and is also a distributive lattice. The construction of the repres
entative space S of Theorems 12 and 15 for this lattice therefore 
provides us with a representation of © in (£. The precise sense in 
which S is represented in (£ will not be considered here. We may 
observe, however, that such a representation is most interesting in 
the cases where (£ is of sharply defined topological nature. Now to 
require that S be an H-space is to require also that A be a generaliz
ed Boolean algebra. In general, the latter requirement is impossible 
of fulfillment — unless, in constructing A, we admit the formation 
of complements and relinquish the condition that A be a basis. In 
our unpublished work on the applications of Boolean algebras to 
topology, we have elaborated the program thus suggested. The 
alternative program of keeping A a basis allowing and (£ to be other 
than an .ff-space seems to be of less immediate interest although it 
is technically similar and can hardly present peculiar difficulties. 

18) Alexandroff and Hopf, Topologie I (Berlin, 1935), Kap. II, § 1, 
Satz XI, p. 01; Alexandroff and Urysohn, Memoire sur les espaoes topo-
logiques compacts, Verhandelingen der Koninklijke Akademie der Weteri-
ischappen te Amsterdam, Deel XIV, No. 1 (1929), p. 12 and preceding 
discussion. 
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Part II. Brouwerian Logics. 

§ 1. Descriptive Introduction. In order to describe our general 
approach to the analysis of logical systems, we must attempt 
a brief characterization of the construction of such systems. The 
customary procedure in setting up a formal or symbolic logic of 
propositions may be summarized not too inaccurately as follows: 
(1) propositions are regarded as abstract entities which can be 
affected or combined by the application of certain postulated 
operations; (2) propositions are to be grouped into „asserted" and 
,,unasserted" propositions, the grouping to be subject to sub
sequently stated conditions; (3) certain combinations of propos
itions are required postulationally to be „asserted" in all groupings; . 
(4) certain assignments of certain sets of propositions as respectively 
„asserted" or „unasserted" are postulated (or, alternatively, exclud
ed) in all groupings. In (3) are provided the ,,formal" rules of the 
logical system, in (4) the „informal". The admissible groupings 
under (2), (3), and (4) may be called „evaluations" of the system of 
propositions in the given logic. In studying such a logic of propos
itions from a mathematical point of view, we confine our attention 
to a class of propositions which has the property that it contains 
all the propositions obtained from any of its members by applic
ation of the operations postulated in (1). Associated with this class, 
we consider the class of all possible evaluations" under (2), (3), (4). 
It is then natural to represent any proposition in the chosen class 
by the class of all those ,,evaluations" in which it is „asserted". In 
this manner,. propositions, operations upon them, and even the 
construction of „evaluations" are represented in terms of abstract 
classes. As we have already suggested in the introduction to this 
paper, this kind of mathematical representation is illustrated by the 
familiar Leibnitz diagrams. 

We propose to consider the Brouwerian logic of propositions 
from the point of view set forth in the preceding paragraph. A symb
olic statement of this logic has been given by Heyting,14) with the 
significant warning, „In principle, it is impossible to set up a formal 
system which would be equivalent to intuitionist mathematics . . .". 
We shall follow Heyting's statement, with a few modifications 
which will be mainly notational in character. 

We begin therefore with a class A of objects, a, b, c, . . ., called 
propositions, and four operations upon them which can be applied 
within A — three binary operations which we indicate by a v b, 
ab9 and a-> b (to be read as the propositions „a or 6", ,,a and 6", 
and „a implies 6", respectively); and a unary operation which we 

u ) Heyting, Sitzungsberichte der Preussischen Akademie der Wissen-
schaften, Physikalisch-Mathematische Klasse, 1930, pp. 42—56. 
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indicate by a* (to be read as the proposition „not a"). Heyting 
writes a A b for ab9 a D 6 for a -> 6, and -ja for a*. We consider the 
class 6 of all partitions p oi A into disjoint nonvoid classes a and u 
(called, respectively, the class of „asserted" propositions and the 
class of „unasserted" propositions) subject to „formal" and 
„informal" rules given below. The admissible partitions p will be 
called „evaluations" of A. If a is any proposition we denote by 
6(a) the class of all evaluations p such that a is „asserted". If 
6(a) = 6, we write |— a; if 6(a) = 6 is assumed as a postulate we 
write \—[— a. The „formal" rules as given by Heyting then take 
the form 

c), 

(2.1) \-\-a-> a«, 
(2.11) Ң - a 6 - > 6a, 
(2.12) h h ( « ^ 6)-> (ac-> 6c), 
(2.13) Ң - (<*-* 6 ) ( 6 - > c И >(a 
(2.14) Ң - 6 - > (a->6), 
(2.15) Ң - a(a-> 6)-> 6, 
(3.1) Ң - a - > a v b, 
(3.11) Ң - a v ć ' -> 6 v a, 
(3.12) H - (a-> c ) ( 6 - > c И • ( a 

(4.1) \-\-a*-> • (a-> 6), 
(4.11) Һ Ь ( a - > 6) (a -> 6*) -> ö 

c), 

We have followed Heyting's numbering for convenience in referring 
to his paper. The „informal" rules which we shall postulate go 
beyond those of Heyting. They can be stated as follows: 

(1.2) 6(a) 6(6) C6(a6); 
(1.3) 6 ( a ) 6 ( a - > 6 ) c 6 ( 6 ) ; 
(1.7) 6(av6)c6(a)u6(b); 
(1.8) if 6(a) C 6(6), then <g(a-> b) = 6 . 

It is clear that (1.2) „if a is asserted and b is asserted, then a6 is 
asserted" and (1.3) „if a is asserted and ,a implies 6* is asserted, 
then b is asserted" correspond to the like-numbered „informal" rules 
of Heyting. On the other hand, (1.7) „if ,a or be is asserted, then a is 
asserted or 6 is asserted" and (1.8) „if b is asserted whenever a is 
asserted, then ,a implies b( is asserted in all evaluations" are „in-
formal" rules which have no application in working out consequences 
of the „formal" rules by finite procedures: (1.7) merely presents 
an alternative and (1.8) requires the construction of all evaluations 
before it can be used. We may regard (1.7) and (1.8) as bringing the 
postulated operations v and -> closer to their colloquial meanings. 
It is clear that (1.8) is also a postulate of completeness" in that 
it describes the possibility of inferring b from a under all evaluations 
by the statement that ,a implies b' is asserted in all evaluations. 
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From Heyting's paper we may now collect certain consequences 
of (1.2), (1.3), (2.1) —(4.11) which we shall use below. With his 
numbering and our notation they are 

(2.2) \- ab-> a, 
(2.282) I— a(a6-> c)-> (6-> c), 
(4.4) r - a * a - > 6 , 
(4.5) [_ (fca _>. a*) -> (6 -> a*). 

§ 2. Representations. We turn now to the analysis of the 
representation of the system A by means of the classes (£(«). We 
have 

Theorem 1. 6(a) C (£(6) if and only if (£(a -> 6) = (£ — that is, 
if and only if \— a -> 6. 

This result follows immediately from (1.3) and (1.8). 
Theorem 2. (£(a6) = (£(a) (£(6). 
From (2.2) and Theorem 1, we have (£(a&) C 6(a), (£(a) C (£(6). 

From (2.11) and Theorem 1, we have (£(a&) C (£(&a). Hence 6(a6) C 
C 6(a) 6(6). Combining this result with (1.2), we obtain the theorem. 

Theorem 3. (£(a v 6) = 6 ( a ) u 6 ( 6 ) . 
The proof, similar to that of Theorem 2, depends in an obvious 

way upon (1.7), (3.1), (3.11), and Theorem 1. 
Theorem 4. / / © is the void class, then 

(1) 6 (a* )6 (a ) = 9 ; 
(2) 6(6) 6(a) = 9 implies 6(6) C 6(a*). 

Theorems 1 and 2 show that (4.4) is equivalent to 6(a*) 6(a) C 
C 6(6). By hypothesis every evaluation p assigns some proposition 6 
to the class of unasserted propositions. Hence a* and a cannot both 
be asserted propositions, whatever the evaluation p. In other words, 
the class 6(a*) 6(a) is void. On the other hand, 6(6) 6(a) = 9 
implies 6(6) 6(a) C 6(a*). Applying Theorems 1 and 2 to the latter 
relation, we obtain 6(6a-> a*) = 6 . Applying Theorem 1 to (4.5), 
we likewise obtain 6(6a -> a*) C 6(6 -> a*). I t follows that 6(6 -> 
-> a*) = 6 . Another application of Theorem 1 now yields the 
desired relation 6(6) C 6(a*). 

Theorem 5. The class 6 (a -> 6) has the following properties: 

(1) 6(a->6)c6'(a)u6(6); 
(2) 6(c) C 6 ' ( a ) u 6 ( 6 ) implies 6(c) C 6 ( a - > 6). 

By (2.15) and Theorem 1, we have 6(a) 6 ( a - > 6) C 6(6). 
Hence we have 6 ( a - > 6) = 6'(a) 6 ( a - > 6) U 6(a) 6 ( a - > 6) C 
C 6 ' ( a ) u 6 ( 6 ) . On the other hand, 6(c) C 6 ' (a)U6(6) implies 
6(c) 6(a) C 6(6); and by Theorems 1 and 2 the latter relation 
implies 6 ( c a - > 6 ) = 6 . Applying Theorems 1 and 2 to (2.282) 
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(with a, 6, c replaced by c, a, b respectively), we have 6(c) 6(ca -> 
->• 6) C 6(a-> 6). Hence the desired relation 6(c) c 6(a-> 6) must 
be valid. 

We now introduce topological considerations, as suggested by 
the results reached in Theorems 4 and 5. 

Theorem 6. If each class (!t(a),a e A, inQ. is assigned as a neigh
borhood of every point p which it contains, then 6 becomes a T^-space. 
The totality of classes 6(a) is a basis A which is also a distributive 
lattice under the operations of forming finite unions and intersections. 
6 (a*) is the interior of the class 6'(a), 6(a-> 6) the interior of the 
class 6'(a)u6(6). In terms of the closure operation for 6, the relations 
6(a*) = g- ' (a) , 6(a-> 6) = [6(a) g'(6)]- ' are therefore valid. 

If p is any evaluation of A, then there is at least one proposit
ion a which is ,,asserted" under p — for instance, all the propos
itions listed under (2.1) — (4.11) are such. Thus every point p in 6 
has at least one neighborhood 6(a). If 6(a) and (£(6) are neighbor
hoods of p, then 6(a6)=6(a) 6(6) is also a neighborhood of p cont
ained in both. If q is any point belonging to a neighborhood 6(a) 
of p, then 6(a) is a neighborhood of q contained in 6(a). Finally, 
if p and q are distinct evaluations of A, there is some proposition a 
which is asserted under one and not under the other. Hence 6(a) 
is a neighborhood of one of the two points p and q which does not 
contain the other. These properties of the indicated neighborhood-
system show that its imposition upon 6 converts 6 into a .T0-space.15) 
From Theorems 2 and 3 it is obvious that A is a distributive lattice 
as stated. From Theorems 4 and 5 the characterizations of the 
classes 6(a*) and 6(a-> 6) are also obvious. 

We can now show that the properties of T0-spaces lead to no 
contradiction between Theorem 6 and the ,,formal rules" with which 
we started. We have 

Theorem 7. Let Q be a T0-space; and let A be any class of open 
sets a, 6, c, . . . in © such that A contains d v 6 = aU 6, a6, a -> 6 = 
==- (a6')—', and a* = a - ' together with a and 6. Then the following 
combinations of arbitrary sets in A coincide with Q: a -> aa, ab -> 6a, 
(a -> 6) -> (ac -> 6c), (a -> 6) (6 -> c) -> (a -> c), 6 -> (a -> 6), a(a -> 
-> 6) -> 6, a -> a v 6, a v 6 -> 6 v a, (a-+ c) (6 -> c) -> (a v 6 -> c), 
a* -> (a -> 6), (a -> 6) (a -> 6*) -> a*. Furthermore, the inclusion 
relation a(a -> 6) C 6 is valid; arid the inclusion relation a C 6 implies 
a-> 6 = ©. Consequently, if 3 is any point in Q, the partition of A 
into the class a of all sets a containing $ and the class u of all sets a not 
containing $, has all the formal properties demanded of an evaluation 
of a Brouwerian system of propositions. 

«) Alexandroff and Hopf, Topologie I (Berlin, 1935), Kap. I, § 4, 
pp.' 58—59. 
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We begin by proving that a C 6 if and only if a -> 6 = S : 
we know that a C 6 is equivalent to a6' = O; since © is a T^-space, 
ab' = O is equivalent to (a&')— = ©; and the latter relation is 
equivalent to a -> 6 = (a6')—' = S . It is then immediately evident 
that the sets a -> aa, ab -> 6a, a -> a v 6, and a v 6 -> 6 v a coincide 
with (5. To prove that (a -> 6) -> (oc -> 6c) = S , we start from the 
relation (ac) (be)' = a6'c C a6'. We then see that [(ac) (6c)']— C 
C (a6')-} (a6')-' C [(ac) (be)']-', and (a-> 6) C (ac-^ be). The des
ired relation follows at once. To prove that (a -> 6) (6 -> c) -> 
-> (a -> c) = (5, we start from the relations oc' = a(6' v 6) c' C 
C a6' v 6c'. We then have (a6')-' (6c')-' = (a&' v 6c')-' C (ac')-' 
and hence (a-> 6) (6-> c) C (a-> c). The desired relation follows 
immediately. In showing that 6-> (a-> 6) = ©, we first recall 
that 6 is an open set, 6'— = 6'. We therefore have 6' = 6'— D (a6')—, 
6C (a6')'—' = (a-> 6), and hence &-> (a-> 6) = (5. To prove that 
a(a -> 6) - > & = © , we begin with the relation a&' C (a6')—. We then 
have a(a6')—' C a(a6')' = a& C 6 or a(a-> b) C 6. The desired relat
ion results at once. To prove that (a -> c) (6 -> c) -> (a v 6 -> c) = 
= (3, we have only to use the relations a v 6 -> c = [(a v 6) c']—' = 
= (ac')—' (6c')—' = (a-> c) (6-> c) and thus infer the desired rel
ation directly. To prove that a* -> (a -> 6) = ©, we start from the 
relation a D (a6'). We then have a* = a—' C (a6')—' or a* C (a->6). 
The desired relation follows directly. Finally to prove that (a-> 
-> 6) (a-> &*)-> a* = (3, we need merely observe the relations 
a* = a - ' = [a(6' v &-)]-' = (a6')-' (ab-)-' = (a-> 6) (a-> 6*). 
In the course of the discussion we have already seen that the relat
ions a(a -> 6) C 6 and a(a -> 6) -> 6 = Q are equivalent and 
both true. 

The remaining statements of the theorem are evident. 
We are now in a position to obtain further information about 

the representation of Brouwerian logics described in Theorem 6. 
We have 

Theorem 8. The space 6 of Theorem 6 is abstractly identical with 
the representation-space of the distributive lattice A as described in 
Part I, Theorems 12, 13, and 15. 

We shall show that the evaluations p of A correspond biuni-
vocally to the prime ^-ideals P in A in such a manner that p e 6(a) 
if and only if 6(a) non e P. The theorem is then evident. 

If p is an evaluation of A, the distributive lattice A can be 
partitioned into the class P of all its members which do not con
tain p and the class Q of all its members which do contain p. I t is 
readily verified that P and Q are disjoint /*-ideai and a-ideal 
respectively. Hence both are prime by Part I, Theorem 4. Obviously 
p e 6(a) if and only if 6(a) e Q — that is, if and only if 6(a) non e P. 
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If P is a prime ^w-ideal in A, the members of A which do not 
belong to P constitute a prime <%-ideal Q, in accordance with Part I, 
Theorem 4. A partition p of A into disjoint non-void subclasses a 
and u can now be defined by putting aea or a en according as 
6(a) e Q or 6(a) e P. By application of Theorem 7 we can now verify 
that the partition p is an evaluation of A. First, let d be any of the 
composite propositions occurring in the ,,formal" rules (2.1)— (4.11). 
By Theorems 6 and 7 we have 6(d) = 6 e Q, d e a. The reasoning 
may be sufficiently illustrated by the consideration of one of the 
rules, say (2.13). By Theorem 6 we have 

<£(d) = 6((a -> 6) (6 -> c) -> (a -> c)) 
= [6((a -> 6) (6 -> c)) (g'(a -> c)]-' 
= [6(a -> 6) (£(6 -> c) 6'(a -> c)]- ' 
= {[«(«) G'(6)]-' [ffi(6) G'(c)]-' [C(a) 6 '(c)]-}- ' . 

In the notation of Theorem 7, this relation becomes 

6(d) = [6(a) -> 6(6)] [€(6) -> 6(c)] -> [6(a) -> 6(c)]. 

Theorem 7 then asserts that 6 (d) = 6 . Next, we may show that 
the „informal" rules are satisfied. In the case of (1.2), for instance 
we have the following reasoning: if a e a and b ea then 6(a) and €(6) 
are in Q; hence 6(a6) = 6(a) 6(6) e Q; and it follows that ab ea. 
Similarly, for (1.7), we see that, if a v 6 e a, then aea or b e a. 
The verification of (1.3) is obtained as follows: if a e a and a -> 6 £ a, 
then 6(a) and 6(a-> 6) = [6(a) S'(6)]-' belong to Q; hence 
S(a) S(a-> 6) belongs to Q; since 6(a) 6(a-> 6) C 6(6) in accord
ance with Theorem, 7, 6(6) also belongs to Q; and hence 6 e a. The 
„informal" rule (1.8) does not impose any condition upon a single 
evaluation. By definition, the evaluation p and the prime ^-ideal P 
are so related that J> e 6(a) if and only if 6(a) non e P. 

The proof of the theorem is thereby completed. 
We may close with a few remarks on the construction of 

evaluations of a Brouwerian system of propositions. If A is such 
a system, (we begin by introducing a relation of equivalence is 
defined by putting a s= 6 if and only if [— (a-> 6) (6-> a). It is 
evident that a =s 6 if and only if 6(a) -== 6(6) in the representation 
of Theorem 6. Consequently we see directly (and can prove in detail, 
if we wish) that, after the introduction of this equivalence, A bec
omes a distributive lattice with zero and unit in terms of the oper
ations a v 6 and o6, every proposition appearing in the ,,formal" 
rules being equivalent to the unit. The evaluations of A can then 
be obtained by partitioning A into a prime ^-ideal and a prime 
<%-ideal: for the distributive lattice A is isomorphic to the lattice A 
of Theorem 6; and the proof of Theorem 8 reveals that the evaluat-
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ions of A are to be obtained by such partitions of A. The construct
ion of such partitions has been described in Part I, Theorems 6 und. 7 

Topologická interpretace distributivních mříží a brouwerovské 
logiky. 

(Obsah předešlého článku.) 

Distributivní mříž je systém, ve kterém jsou definovány 
dvě binární operace a v b,ab vyhovující všem axiomům Booleovy 
algebry až na to, že se nepředpokládá existence komplementu. 
Hlavní výsledek je, že každá distributivní mříž se dá realisovati 
systémem všech otevřených bikompaktních podmnožin topolo
gického prostoru podrobeného jednoduchým podmínkám. Ve druhé 
části je nastíněno znázornění brouwerovské logiky distributivní 
mříží, které odpovídá znázornění klasické logiky Booleovoú alge
brou; podstatný rozdíl je v tom, že při znázornění brouwerovské 
logiky jsou třídy vedle kombinatorických operací podrobeny ještě 
operacím topologickým. 
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