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S U P P L E M E N T T O K Y B E R N E T I K A V O L U M E 28 ( 1 9 9 2 ) , P A G E S 4 1 - 4 ' 

A NONSTANDARD APPROACH TO 
FUZZY SET THEORY 

C O S T A S A. D R O S S O S , G E O R G E M A R K A K I S AND M. S H A K H A T R E H 

The nonstandard approach to fuzzy sets [1] is based on a Boolean generalization of Infinitesimal 
Analysis [2], [4], [6]. 

This paper, gives a short review of this approach, describes some applications to mathematical 
structures and indicates the way for an extension using fuzzy partitions. 

In addition, we prove that the theory is general, since for any ordinary fuzzy set / : X —» [0, 1] there 
exists a unique Boolean probability algebra (B,p) and a B-possibility distribution JT : X —» B, such 
that 

f -poir. 

0. I N T R O D U C T I O N 

The transition from s tandard ZFC model of set theory to a nonstandard one, can be 

done in two formally equivalent ways: the extensional and the intentional one [1]. 

In the Cantorian absolute framework, concepts have an ideal Platonic and absolute 

character, and their exactness and sharpness are at tained through the use of absolute 

reference space and of actual infinite. Seeing the absolute ZFC framework with a local 

and non-Cautorian way we get a fuzzy deformation of it, which gives "a realism with a 

human face" and consti tutes "A Theory of Fuzzy Sets" which of course depends on the 

way we introduce the local concepts [1], [3], 

1. B-FUZZY REALS, SETS, AND FUNCTIONS 

In the following (B,;>) is a probability algebra. We construct R # (:= IR[B]) the Boolean 

power of the reals [2], which is a Boolean valued model of R . The elements of this set 

are called IB-fuzzy reals and can be written as a countable "mixing" of elements of R 

with various "weights" ( / = JYg/ •''• ' '•• where t,'s form a partit ion of unity in B and 

x,-'s are real numbers) . Actually such a mixing is a function / £ B R of the form : 

f(xi) = U and f{x) = 0B for x ^ x{ 

The "weight" ||<ji|j of any statement <j) about real numbers is an element of B and 

R # (= 0 <=> ||<*|| = 1 B 
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Especially | | / = £'|| = f(x). The extensional analog of a IB-fuzzy real is a randomly 

variable real in discrete t ime [3]. Taking the superstructures V ( R ) and V ( R # ) we 

establish a function [4] # ( • ) between them satisfying: 

(i) IB-Extension Principle. 

The set R # is a B-total ly ordered Archimedean field, which is a proper extension 

of R , i.e. R # D R and r* = r = f for all r £ R . 

(ii) Transfer Principle. 

For every a\, • • • an € V ( R ) and every bounded statement <j> then <j>(a\ ... an) holds 

in V ( R ) iff its #- t ransform, <j>(a* ...a*) holds in V ( R # ) . 

The sets # ( A ) := A* are called standard. Elements of s tandard sets are called in­

ternal. Internal elements of the non standard superstructure are the B-fuzzy analogues 

of the elements of the s tandard one; i.e. IB-fuzzy subsets of A are elements of [V(A*)} 

(countable mixings of sets), B-fuzzy functions from A to B are elements of (AB*) (mix­

ings of functions), etc. The membership function can be defined recursively for all the 

elements of the non s tandard superstructure and clearly any fuzzy element can contain 

also fuzzy elements of a lower type. This membership function can be completely deter­

mined by its restriction to the standard elements [3]. Details on the above notions, as 

well as the IB-development of Zadeh's extension principle can be found in [3]. Next we 

describe briefly some of possible mathematical applications of the above theory. 

2. B -FUZZY T O P O L O G I C A L AND MEASURE SPACES 

Let (A",T) be a topological space". Then (X* ,T*) is a B-fuzzy topological space, where 

the open subsets of X are the elements of T# (mixings of standard open sets). Clearly 

7"# c [V(X)} and to any B-fuzzy subset / of X a degree of openness (op) can be 

assigned by 

op(f) •= | | / e T # | | e B . 

This degree of openess is with respect to the internal observer (cf. [3]). We also have a 

degree of oppeness with respect to the absolute external observer: 

oPrAf) •= 11/ e t\\ e B. 

Similarly, if (Q,A, P) is a measure space then we construct the fuzzy measure space 

(il*,A*,P*), where the B-fuzzy measurable subsets of SI* are mixings of s tandard 

measurable subsets of fl and P* is a B-fuzzy measure defined for any A £ . 4 * , A = 

E Ai • U by 
p*(A) •= YlP(Ai)-ti e [0,1]# 

We may also assign degrees of mtasurabililies (me) in a similar way, to any B-fuzzy 

subset of il* by 

mf(f) •= | | / e . 4* | | £ B and meex(f) •= 11/ € i | | € B correspondingly. 



Fuzzy Concepts Detined Via Residuated Maps 43 

Consequently, B-fuzzy random variables (r. v.) are internal measurable functions of the 

form X : (SI*, A*) -> (U*,B*), where B is the Borel cr-algebra of the real line. The 

rationale behind the concept of fuzzy r.v. is as follows: Suppose tha t we have a random 

experiment and at the same t ime there is an "observational" limitation about the values 

of the r. v., which results to a second kind of uncertainty, namely "vagueness". We would 

like to combine the two types of uncertainties into a new concept, i .e. the concept of 

fuzzy random variable. Our proposal for the concept of fuzzy r.v. captures all the above. 

3. T H E G E N E R A L I T Y O F B-FUZZY SETS 

In this section we give a brief description of a theorem which proves tha t B-fuzzy sets 

are general enough and give a factorization of a fuzzy set to a qualitative B-valued 

component and a quanti tat ive one, which is a probability. 

T h e o r e m . Let / : X —> [0,1] be an arbitrary fuzzy set. Then there is a probability 

Boolean Algebra ( B , p ) and a. B-valued function, such tha t , 

/ = p o jr. (*) 

P r o o f . The proof of the Theorem, essentially is a consequence of the results of 

Stormer [9], and the general theory of B-fuzzy sets [1] - [6]. 

However one can give a more direct proof using the theory of Cantor spaces, Y = 2X 

and defining TT(X) := {y € Y : y(x) = 1}. For the measure p, let (ZT)x^x be a stochastic 

process defined on Y. If we define the finite dimensional distributions as in [9], then the 

Kolmogorov's consistency theorem is satisfied, giving a probability on Y, such tha t (*) 

holds. D 

4, FUZZY PARTITIONS 

For all concepts not defined here the reader is referred to [7] and other works of Piasecki. 

In the definition of soft &-algebras there is always the nuisance of constant fuzzy set | . 

To overcome this problem we propose the following construction: Let F = F ( f i ) be the 

class of all fuzzy subsets of SI. Using an idea of Yager-Sgarro [8], we may classify fuzzy 

subsets F as follows: 

Let li be a free ultrafilter on SI. We may say that a property p holds a.s. with respect 

to U if { w € fi : p(<*>) holds} € U. For each / £ F , let the degree of fuzziness f be 

defined as the essential supremum of / * = / A (1 — / ) , i.e. / := ess.sup / * . Thus for 

every fuzzy set, / < | and / = 0 iff / is crisp a. s. If / = | then the degree of fuzziness 

of / is unlimited or infinite. 

Let, 

F ^ := ( J F n where F „ := {/ G F : / < a} 

0<o< i 
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Then i ( - ) ^ Foo, and thus a fuzzy <r-algebra can be defined as a C Foo satisfying the 

usual axioms. The above constructed fuzzy superstructure over fi has a non-standard 

flavor and may be proven useful in general. 

Now if (SI, a, P) is a strong fuzzy F-measure [7] then the following relation defines an 

equivalence relation: 

/ ~ g <^=> P[(f A g') V ( / ' A g)\ = 0, where / ' := 1 - / . 

The IB := aj ~ is a Boolean algebra and the canonical mapping is a c-homomorphism. 

Using this probability Boolean algebra (IB,p) in our general theory of IB-fuzzy sets [1], 

[2], [3], [4], we get a direct stochastic approach to fuzzy sets theory [5]. 
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