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K Y B E R N E T I K A - VOLUME 26 (1990), N U M B E R 1 

DESIGN OF SPLINE-BASED SELF-TUNERS 

MIROSLAV KÁRNÝ, IVAN NAGY, JOSEF BÓHM, ALENA HALOUSKOVÁ 

The paper describes a way of constructing digital adaptive controllers for continuous-time 
linear systems. The key step of the design is the simultaneous spline approximation of both 
signals and operator kernels in the integral (convolutional) description of the controlled 
system. Having the freedom to choose nonequidistant spline nodes, a possibility of better modell­
ing — under model-complexity restrictions and for short sampling periods — is gained. 

With a suitable spline basis chosen, recursive identification and minimization of integral 
quadratic loss can be solved by reliable algorithms developed for regression model and discrete 
time quadratic loss. The conceptual feasibility of the approach is demonstrated (even for poten­
tially infinite control horizon) to yield implementable adaptive controllers. 

1. INTRODUCTION 

A significant part of contemporary research into digital self-tuning controllers is 
oriented towards continuous-time modelling of the system under control [7], [6], 
[16]. The primary aim is to improve the quality of control by taking into account 
the continuous nature of controlled systems and applying feedback and/or feed­
forward actions with the highest possible sampling rate. 

Implementation of adequate solutions to these and associated problems depends 
heavily on appropriate connections between the continuous-time reality and the 
discrete-time nature of digital data handling. The cited papers are examples of the 
progress made in this respect. They share, however, a common drawback: they rely 
on ARMAX-type models and must deal with inherent difficulties related to the 
MA-part of this model (no finite-dimensional statistics for its recursive estimation, 
no systematic method for fixing it beforehand). 

This paper can be taken as an alternative, hopefully more flexible, way of address­
ing digital self-tuning control of continuous-time systems. The approach has been 
developed in connection with a particular application case [11] in paper industry. 
The key problems of modelling and approximation are solved as follows: 
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— The convolution-type non-parametric linear model of a stochastic controlled 
process is used as underlying process description. Among equivalent input-
output descriptions, the version is chosen the noise of which becomes practically 
white after sampling. 

— A finite parametrization needed for practical use is achieved by 
— approximating both signals and operator kernels by splines with a finite 

support; 
— assuming that the process history has a practical impact on a limited time 

span only. 

In this way, the sampled system model converts to regression-type models with 
regressors formed by filtered input-output samples. Consequently, the fact that 
digital LQG self-tuners based on regression models have achieved the stage of practi­
cal applicability can be exploited: 

— The gained model can be identified by recursive least squares. 
— The integral quadratic performance index converts (under the adopted assump­

tions) in a discrete quadratic loss with a non-diagonal weighting. For it, suitable 
optimization techniques are available [10], even for constrained inputs [2, 3]. 

The ARMAX-based solutions referred above can be interpreted and treated 
similarly. Our design is, however, felt to be conceptually straightforward and applic­
able to non-standard cases like systems with distributed parameters. 

A common difficult point of the cited and proposed solutions is the choice of data 
filters. In both cases, they can be chosen a priori by using structure determination 
theory [8]. Properties of the spline bases, which determine the filters in our case, are, 
however, more tightly connected to those of observable signals in the time domain. 
It leads us to the conjecture that the choice of the proper spline base will be simpler 
than that of the noise covariance in the ARMAX model. 

Approximating the involved signals by splines, we have joined the stream of 
attempts which exploit various, typically orthogonal, types of expansions for control 
and/or identification purposes (see e.g. [4], [5]). However, according to our best 
knowledge: 

— Nobody has had the audacity to approximate both signals and operators at the 
same time. The joint approximation adopted here seems to be more universal 
and internally consistent than the combination of splines with a state space 
model [4]. 

— No expansion-based version of self-tuners (in the sense of the cited papers) has 
been worked out. Their on-line nature has to be especially dealt with: a finite 
number of parameters can only be estimated using recursively computable finite-
dimensional statistics. The regression model we have arrived at is the most 
important case with this property. 

The key steps of modelling and approximation are explained in detail. It should 
enable the user to tailor the proposed controller to various versions of LQG self-
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tuner design. The optimization part of the controller is touched only because the 
major changes (comparing to the usual LQG design) concern identification. 

For simplicity, the discussion is restricted to SISO systems. The basic notions are 
illustrated using first degree splines which are both simple and of direct practical 
use. 

2. PROBLEM, KEY ASSUMPTIONS AND DESIGN RESTRICTIONS 

The constructive problem is addressed in the paper: 
Design a prototype of the adaptive digital controller of a continuous-time linear 

time-invariant system optimizing the integral-quadratic performance index under 
the following key assumptions: 

— the relation of the system output to the system input and process noise is affine 
describable in terms of convolution operators; 

— the controlled process history has a practical impact on a limited future only; 
— all functions involved in system model can be approximated by properly chosen 

splines in the sense that the sampled process noise corrupted by approximation 
error can be modelled by stationary gaussian process. 

The design is performed under commonly acceptable restrictions: 
— the separation of identification and control design is enforced; 
— the control design is performed for a potentially infinite horizon. 

3. PRELIMINARIES 

Essential concepts and facts are summarized in this section. The notation is 
introduced at the same time. 

Common formal agreements 

Simultaneous use of operators, continuous-time dependent vectors, functions, 
discrete-time dependent samples etc. makes the notation somewhat complicated. 
Noting the following rules should assist the reader: 

Y(*), y(t), u(t),fi(t), a(t — T) — functions of continuous time t or x are identified 
by (•), (t), (t — x) type arguments; 

a(k), F(k) — samples related to the discrete time step k (sampling time tk) will be 
denoted by a (k) type argument; 

A, B, b — bold Latin Roman symbols denote operators; 
w,f(t), F — lower-case (upper-case) of bold Italics symbols denote column vectors 

(matrices) respectively; 
wi> fi(t), FtJ — subscripts indicate a particular entry in an array; 
2tfu, wy, ny — superscripts refer to the functions to which the indexed symbols 

are related (the transposition is denoted by '). 
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The relation of the chosen system model to the general description of affine systems 

The general description of an affine time-invariant continuous-time stochastic 
controlled system has the form 

AY(-) + BU(-) + CE(-) = 0 (1) 

where A, B, C are general affine, time-invariant, causal operators acting on function 
spaces JfY , 34?u, 34?E of the system output Y(.), input £!(•) and white noise E(*), 
respectively. 

The description (l) is not unique — the equation can be multiplied by an operator. 
Thus, a theoretically equivalent model 

AY(-) + Blj(-) + E(-) = 0 with A = C*A , B = C*B (2) 

can be considered. We suppose that there is such an operator C* for which the trans­
formed noise signal 

E(-) = C*CE(-) (3) 

becomes white discrete process when sampled with the shortest technically feasible 
period. Under this assumption, the latter form of the model will be used as the basic 
system model from here onwards. 

Convolution form of causal operators 

The operator A acting on the signal Y(*) at the time te [0, T] will be assumed 
in the convolution form 

AY(t) = 0A + J0 A(x) Y(t - T) dT (4) 

where T < oo is the horizon of interest, the offset 0A reflects the nondecreasing 
influence of the initial conditions and ^ ( T ) e &A is a causal (^(T) = 0 for T < 0) 
smooth kernel. 

The operator B is described in the same manner with the characteristics 0B and 
B(-). 

Remark. A more careful modelling of the influence of system initial conditions 
is possible, by assuming time-dependent 0A in the form 

const^ + const^ J0 A°(x) dx 

with a kernel A°(') and similarly for 0B. For simplicity, this straightforward extension 
will not be treated here. 

Splines 

We shall approximate functions defined on time interval [0, T] from various 
function spaces J/C* (distinguished by the superscript Xe[Y, U,A,B}). For each 
of them, approximating functions will be chosen from a properly selected set of 
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splines. Where helpful, symbols related to approximating functions adjoint to 
respective spaces will be distinguished by the superscript x e [y, u, a, b}. 

For defining splines of the degree m we shall divide the interval [0, T] by the 
nodes {t£}f=0 

0 = to < h < • • • < *N = T (5) 
A function x(t) is called spline of the degree m and of the defect d e {1, 2,..., m} 

[13] iff 
— x(t) is a polynomial in t of the degree at most m on every open subinterval 

(h-uh); 
— the derivatives of x(t) on the entire interval [0, T] are continuous as long as their 

orders are at most m — d. 
The linear space spanned over splines of the degree m defined by the above grid 

has the dimension dim = (N + 1) d + m + 1 [13]. Thus, there is a basis having 
dim linearly independent members, say/£(t), such that any spline x(t) from the discus­
sed span can be expressed as 

dim— 1 

*(0 = £ W./.M = »'/(*) (6) 
t = 0 

where the weights wt are uniquely determined. The base functions as well as the 
weights are ordered into the dim-vectors 

f(t) = [/oM> -•Jdim-l(t)J , W = [w0, ..., w^-i]' . (7) 

In order to stress that the control horizon is unbounded, the vectors (matrices), 
the dimensions of which grow linearly with T, will be called potentially (semi)infinite, 
and when written entry-wise the following notation will be used 

x' = [x0,..., xt,...] . (8) 

4. APPROXIMATION OF SYSTEM MODEL 

Motivation 

For self-tuners, the model (1) as well as its formal equivalent (2) are supposed 
to be unknown and identified when the control takes place. At least for identification, 
a finite parametrization is needed. It means a class of finitely parametrized models 
has to be chosen within which there is "sufficiently" good approximant of the real 
infinite-dimensional systems. Obviously, the good approximants of the model (1) 
need not be satisfactory for the model (2) and vice versa. Thus, the discussed system 
descriptions might be quite non-equivalent when performing the inductive step 
from reality to mathematics. 

The spline approximation of the version (2) has been chosen as: 
— the need for approximative recursive identification (connected with MA-part of 

ARMAX models) is avoided; 
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— the number of the estimated parameters is expected to decrease when approximat­
ing the "ratios" A, B by splines with nonequidistant nodes (comparing to the 
traditional sum of pre-specified exponentials); 

— smoothness degree of the signal part taken as useful (worth to control) is explicitly 
in the designer's hands (a time domain counterpart of cross-over frequency?!). 

Outline of the used approximation 

The input-output signals Y(t), U(t) will be interpolated by splines y(t), u(t). The 
approximation of the linear operators A, B in the system model (2) will rely on the 
assumption that they are convolutions specified by the kernels A('), B('). The 
approximating operators a, b are assumed to be of the same convolution form as 
A, B. Their kernels a(t), b(t) will be constructed as the spline approximations of the 
kernels A(t), B(t). 

The spline bases {/f} for x e {y, u, a, b] approximating the functions from the 
signal spaces #(?Y, 2^v and from the kernel spaces 3^A, $fB can differ in the grids 
dividing the interval [0, T] as well as in the degrees and in the defects employed. 

Thus, all functions are approximated by appropriate splines 

y(t) = w>'r(t), u(t) = w«'r(t) (9) 
a(t) = w°'r(t), b(t) = wb'f(t). (10) 

Remark. Note that the approximation of operators used relies on the assumption 
that the approximated kernels are smooth, i.e. above all without Dirac ^-functions. 
If these are present it is sufficient to treat them as additional terms in operators 
expression. The extension to this case is straightforward and will not be treated here. 

Choice of base functions 

The choice of the basis is determined by the requirements on the approximation 
to be performed. We are searching for the basis with members having finite (possibly 
shortest) intervals (supports) for which they are nonzero, for which the weights 
wt in (6) are easy to determine and which have possibly a small defect. The ordering 
of the requirements expresses our current preferences over them. 

The finite length of the supports (required even for T-» oo) is of vital importance: 
we shall rely on the obvious consequence that under this condition only a finite 
bounded number of supports of different base functions have a nonempty inter­
section with a given one. Similarly, the determination of the weights must require 
only a finite number of neighboring data samples. 

The smoothness of the approximants, i.e. the relevant defect, should correspond 
to the smoothness of the approximated functions. At present, we have not found 
sufficient reasons to insist strictly on the assumption that the spaces tfY, 3^v, 3^A

y ffl* 
contain only the functions with continuous higher-order derivatives. 
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In view of the listed preferences, we have chosen interpolating splines with finite 
support, fulfilling the condition 

/ i ( ' j ) - * V - { J o°therwis"e;. <U) 

This requirement implies that the weights in (6) become values of the function x(t) 

wt = x(tt) (12) 

It is a simple algebraic exercise to show that splines of the recommended odd 
degree [13] m = 2r — 1 have the necessary defect equal to r and the supports 
are pairs of neighboring subintervals specified by nodes tt. For a defect greater than 1, 
the selected splines do not form a whole basis of the span. 

Fig. 1. Intersection of supports of base functionsfj (•),/"£(.) used for approximating the output 
y(T) and the kernel a(t — T) of the convolution operator a(.) = J0 a(t — T) (.) dT. 

In the first-degree case, the basis is unique and consists of "hat"-like functions 
ft(t) on (ti_i, ti) for i = 1, ...,N — 1 (see Fig. 1). The functions f0,fN are "half-
hats" restricted to the intervals [0, tx] and [ t^-i , T]. 

Remark. The inclusion of the approximating functions from outside the subspan 
cannot improve the quality of interpolation. A loss in smoothness of approximating 
functions is currently not considered to be important, but this attitude may be 
changed after further research. 

Signal approximation 

Choosing (as usual) the same sampling rate for all signals with a fixed sampling 
period ts, it is natural to take sampling points as grid points of the corresponding 
splines, i.e. 

t" = i^ , t\ = its + shift of input-output sampling (13) 
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The weights of the signal approximants [wy, wu) are then directly measurable and 
coincide with the signals Y(t), U(t) at sampling points 

wy = K , . . . , < . . . ] ' = [y(ty
0),..., y(ty), ...] '= [Y(ty

0),..., Y(tf), . . . ] ' (14) 

wu = [w0, . . . , < , . . . ] ' - [11(15),..., II(|{), . . . ] ' = [U(f0),..., U(tu),...]'. (15) 

Because of the fixed finite distance between respective sampling nodes, the number 
of grid points Ny, Nu is proportional to the assumed horizon. As the case T -*• 00 
is assumed, the numbers of grid points are potentially infinite, too. From here 
onwards we shall stress this fact by formally setting Ny = Nu = 00. 

Operator approximation 

The approximation of the kernels is based on the assumption, that approximants 
are interrelated by the same equation as the original one, i.e. 

ay(-) + btt(-) + e(-) = 0 (16) 

where e(-) represents the stochastic term E(*) modified by approximation error, 
which has to be made virtually negligible. 

As the number of the input-output samples is potentially infinite the finite-memory 
assumption is crucial for restricting the necessary operations to a fixed finite amount 
even for a potentially infinite control horizon. We rely on the assumption that the 
kernels have (practically) finite bounded support so that they can be approximated 
by the splines with a fixed finite number of nodes (na + 1 resp. nb + 1) * 

«« = !>*/?«> K0 = i>?/?(0 (17) 
i=o ;=o 

with constant weights 

H>a = K , w\,..., w%]f, wb = [wb
0, w\,..., wb

b]'. (18) 

The necessary quality of approximation of both kernels can be achieved by choos­
ing appropriate spline supports and (non-equidistant) grids. Having on mind the 
aim of the paper, instead of analyzing the precision of the approximation (closely 
related to the so-called L-splines) a ready algorithmic tool for support and grid 
choice is referred in the next section. 

Design model 

By combining the above steps, the model (16) converts into the following (linear-in-
parameters wa, wb) model 

I i^y(^iofKt-r)fJ(T)dT + 
i = 0 j = 0 

nb 00 

+ I S A «05) fo/?(- - *)/>) dr+0A+0B + e(t) = 0 (19) 
i = O j = 0 
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which will be used as design model (its parameters are estimated and control synthesis 
performed for it with parameters replaced by their estimates). 

We put (19) into matrix form 

wa' Fay(t) wy + wb' Fbu(t) wu + o + e(t) = 0 (20) 

where we have introduced the "joint" offset 

o= 0A + 0B. (21) 

The semi-infinite matrices Fay, Fbu are of the type (na + 1, oo), (nb + 1, oo), re­
spectively, with generic (i,j)th entries 

Fiyj(t) = iiij^ft(t-^mdr (22) 

Fbij(t)^jIijbuwfb(t-x)f;(r)dr (23) 

where I**(t) is the actual intersection of the integrand supports. 
Due to the finite length of the spline supports, only a finite bounded number 

of them have a nonempty intersection. This implies that each matrix F(t) contains 
a finite bounded number of nonzero entries (the position of their bounded cluster 
shifts with time, cf. also Fig. 2). 

Consequently, for the selected base functions, the signals y(t), u(t) at time t can 
be shown to be linear combinations of a fixed finite number of the measured past 
samples and at most of a single future sample. It can be seen from the explicit 
expression for the generic interval I"j(t) 

Iay(t) - (max (t)_x, t - f i + x ) , min (ty
j+x, t - ta_x)) (24) 

which implies 

/ ? # ) = 0 for ty.+ x < t - ta
i+x or ty_x>t-ta_1. (25) 

The formulae for Ibu are analogous. 
In the above expressions, the relative positions of indices i, j and of the time t 

correspond to schematic Figure 1 which illustrates the above statements. There, 
the symbol V denotes the length of the kernel support in terms of signal sampling 
units. 

5. IDENTIFICATION 

Due to the continuous-time nature of the model, identification can be performed 
for any sequence of identification moments, say {4}iT=o» w i t n increments guaranteeing 
the whiteness of the sampled noise 

«*)}?-o = W4)}*% • (26) 
If the relative positions of the identification-moments and interpolating nodes 

{ty
k, t"}*=0 are invariant then the nonzero entries of the matrices Fay(k) — Fay(tl), 

Fbu(k) = E6u(4) do not depend on k and can be precomputed. It can be verified by 
inspecting their definitions (22), (23). 
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Introducing the (na + 1) and (nb + 1) vectors of the filtered outputs and inputs 

y(k) = Fay(k) wy u(k) = Fhu(k) wu k = 0,1, 2 ... (27) 

and the (na + nb + 3) vector of unknown coefficients 

0 = [wa\ wb', o]', (28) 

we arrive at the standard regression model 

0'd(k) + e(k) = 0, k = 0,1,2,... (29) 

with the (na + nb + 3) data vector 

d(k) = (y(k)', u(k)', 1)' (30) 

Figure 2 illustrates the relation between the measured data samples and the filtered 

y(k) Fav{k). U>» 

/o г 

y(k + l) F**(k + l) 

dat i window k 
for the time: k + 1 

Fig. 2. Time evolution of the filtered data y(k). 

signals. A small section of the semiinfinite data vector is needed only. The framed 
nonzero part of the F(-) matrix remains the same, its position changes as it is shown 
schematically. 

The model (29) is not unique — any of the parameters or the noise dispersion 
can be normalized to unity. The normalized parameter 9 is introduced (with (na + 
+ nb + 2) entries) by setting, as usual, 

< = - l - (31) 

In this way, the regressand y0(k) and the regressor z(k) are made explicit in the data 
vector d(k): 

Po(k) - [[h(k), • •., yjk)] , u(k)', 1] 9 + e(k) = 9' z(k) + e(k) . (32) 

Assuming a normal distribution for the sampled noise, the full strength of the 
Bayesian approach is available for the identification of the model. This means: 
— an algorithm formally equivalent to the recursive least squares is optimal for 

gaining available information about the system [15]; 

26 



— the efficient technique of restricted forgetting [14] for tracking slowly varying 
weights is immediately applicable; 

— prior information about unknown parameters can be built in the estimation 
using the available theory [15], [9]; 

— the theory and algorithms are prepared allowing a prior data-based choice 
of the optimal structure of the data vector [8], [12]. 

Remarks. 

1. The last item is of vital importance as we can rely on efficient tools for determin­
ing both the "degrees" n", nb and the position of the grid points for the kernel ap­
proximation. 

2. From the identification point of view, the availability of the vector of the filtered 
output y(k) defines the boundary between past and future. The time-delay in identi­
fication introduced due to the spline non-causality is at most a single sampling 
period. 

6. CONTROL SYNTHESIS 

Using the continuous model, we shall optimize the expected value E[*] of the 
integral quadratic performance index J 

J = y V « + lU\t)\it (33) 

specified by the potentially infinite horizon T and by the input penalty q > 0. 
The selected regulation problem serves as a prototype for optimization: features 

such as a varying set point [10] (also modelled by splines), discounting etc. as well 
as extensions (hard bounds on the inputs) [2], [3] of the LQ design are directly 
applicable. 

The control synthesis is performed assuming 

— practically negligible approximation errors for all functions involved (relying 
heavily on the structure determination); 

— complete knowledge of the parameter 0 = [wa',wb',o]' (adopting the certainty-
equivalence suboptimal control strategy usual for self-tuning controllers). 

Using the first assumption, the loss function (33) can be written in terms of the ap­
proximative functions y(t), u(t) 

J = UT[y2(t) + qu2(t)]dt. (34) 
•* Jo 

The signals involved are of the form (9), so we find that 

j = w
y'Qywy + wu'Quwu (35) 
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where the penalty matrices Qy, Qu are evaluated in the following obvious way 
I*T „ CT 

т 
' fy(t)r\t)dt QU = %\ r(t)r'(t)dt. (36) 
o •* Jo 

These (potentially) infinite-dimensional penalty matrices are clearly positive semi-
definite, symmetric tridiagonal (just two base functions have nonempty intersection 
of supports) 

f j?::;W(0) adt for i-j 

fiv-|f!!+iy?(0/r+i(Od« for | j - / | = l for x = y,u (37) 
[0 otherwise. 

Thus, the continuous criterion (33) converts into the discrete-time one (35) which 
attaches weights to the input-output samples wu, wy (cf. (12)). These samples are, 
according to the second assumption, related through the linear equation (32) with 
known coefficients. Introducing the "filtered" parameters 

d'(k) = wa' Fay(k), B'(k) = wb' Fbu(k) , (38) 

we can write (33) explicitly in terms of the sampled data. The filtered parameters are 
(potentially) infinite-dimensional vectors which depend on sampling times (cf. Fig. 3). 

wa' Fay(k) 

¥ 0 

•d{k) i i 

= i o n gs ! o : : : 

Fig. 3. The extension of the estimated weight wa' to filtered parameters a'(k) used in the opti­
mization. 

They have, however, a finite number of time-invariant nonzero entries which shift 
with time. This is implied by the fact that the matrices Fay(k), Fby(k) have at most 
ny + 1 = IFIX(lajts + 3), nu + 1 = IFIX(lhjts + 3) nonzero, time-invariant columns 
respectively (IFIX(') denotes the integer part of the argument; la, lb are lengths of the 
kernel supports). Thus, the model for discrete samples relates y(t{), y(tl_i),... 
• • •> y(tl-ny) and u(tJ

k), u(tl_ J , ..., «(?*_„„). 
The evaluation of factors for tridiagonal positive definite matrices can be performed 

recursively with negligible computational demand per row. Thus, we can assume 
that factorized versions [1] of penalty matrices are available. Consequently, the 
factorized, discrete-time linear quadratic optimization for regression [10] generates 
the optimal discrete input samples. Using the relation (9) the continuous input is 
designed. 



Remarks. 

1. The use of nondiagonal penalty matrices in SISO system is somewhat unusal 
but fully justified in our case. Strong connections to data prefiltering discussed in [16] 
can be detected. 

2. The definition (38) can be viewed as a special way of generating an overpara-
metrized regression model (see Fig. 3). This observation could be used for inspecting 
relations between the described controller and the class labelled as predictive control 
[17]. 

3. A decrease of computational demands could be achieved by penalizing filtered 
signals (27) instead of the measured data. This possibility will be tested in the future. 

7. CONCLUSIONS 

The paper describes a way of constructing self-tuning controllers of a continuous-
time-modelled system. It can be taken as an alternative to former attempts of design­
ing digital self-tuners which respect continuous nature of the controlled process. 

The key step of our design is the simultaneous approximation of signals and of 
the operator kernels by properly chosen splines with a finite support. In the paper, 
the conceptual feasibility of the approach is demonstrated yielding easily implement-
able adaptive controllers which promise 

— an increase of the control quality due to improved modelling and a possibility 
of achieving shorter sampling periods than is usual for discrete-time controllers 
of a limited complexity; 

— a computerized prior choice of data prefilters (left up to now to user's responsi­
bility in other solutions). 

Moreover, the used convolutional model provides a very general description 
of time-invariant linear system. The adopted way of its approximation is felt to be 
conceptually straightforward and can be applied directly to other cases, e.g. to 2D 
systems [11]. At the same time, smoothness of that signal part which is taken as 
worth to control comes explicitly to the designer's hands (a time domain couterpart 
of cross-over frequency?). 

The paper reports a relatively early stage of the research which has produced 
applicable controllers but which is by no means complete. It will be necessary 

— to perform extensive simulation and pilot-plant tests to gain experience of the 
sensitivity of the controllers to mismodelling (the simulation experience is en­
couraging); 

— to assess the possibility of using smoothing splines instead of interpolating ones 
(the methodology developed in [18] seems to be applicable); 

— to make the modelling of noise term more rigorous (an imbedding of noise 
space to a span over polynomials of unbounded order is studied to this purpose); 
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— to decrease the computational demands of the synthesis part (a direct spline 
approximation of performance index might be appropriate for this). 

(Received April 21, 1989.) 
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