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K Y B E R N E T I K A - V O L U M E 25 (1989), NUMBER 2 

AN ALGEBRAIC APPROACH TO THE SYNTHESIS 
OF CONTROL FOR LINEAR DISCRETE 
MEROMORPHIC SYSTEMS 

JAN JEZEK 

In the paper, the polynomial approach, successfully used for the synthesis of control of finite-
dimensional linear systems, is generalized to the class of meromorphic systems. It is shown that 
many properties carry over without changes but some have no analogy in the new class, and 
there are also some new properties emerging. 

0. INTRODUCTION 

The polynomial approach [1] proved to be a convenient tool for the synthesis 
of control in linear systems of finite dimension. The basic idea is a formulation 
of control problems as equations in an appropriate algebraic ring, where divisibility 
plays a role, first of all in the ring of polynomials. It appeared later that this idea 
was general and not limited to finite-dimensional systems and polynomials [2]. 
A possibility is now open to utilize this "algebraic approach" for the synthesis of 
control in various classes of systems, e.g. those with distributed parameters. 

These basic ideas are clear but the algebraic theory of systems and control is still 
far from fully developed. The control problems are intertwined here with the idea 
of "system classification": how to define various classes of systems (controlled 
systems and controllers) with good properties, namely: 
— combination of systems according prescribed rules should give results within 

the class, 
— the prescribed control problems should have reasonable solution within the class. 
It appears that the properties of systems and control are determined first of all by 
the corresponding class (divisibility, prime factors, ideals). 

The presented paper aims to elaborate the above outlined algebraic approach 
to the class of linear discrete, time-invariant systems whose transfer functions are 
meromorphic functions of the delay operator. They are a very simple generalization 
of systems with rational transfer functions. It appears that the majority of system 
properties carries from rational to meromorphic without changes. However, there 
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are some properties which have no analogy in the new class, and on the other side, 
there are some new properties emerging. 

The paper is organized as follows. In the mathematical sections 1, 2, 3 the pro
perties of the entire functions and of the meromorphic ones are summarized in 
a form suitable for the control theory. Most results are either known or easily 
derivable, that is why the proofs are omitted, only one lemma is proved in the Appen
dix. Section 4 belongs to the system theory, it introduces the class of meromorphic 
systems and shows the connections between their state-space models and input-output 
models. Some simple examples, illustrating the importance of the class of mero
morphic systems, are shown in Section 5. The ideas of control synthesis and their 
connection with algebraic properties are exposed in Section 6. 

The symbol U will stand for the field of real numbers, C for complex, P — C — (0). 

1. ENTIRE FUNCTIONS 

Entire functions are generalization of the polynomials. They are defined as func
tions f(q) of complex variable q, analytical in C. The polynomials are a special case 
of them; they have a pole in the point q = GO. The other entire functions have an 
essential singularity here. 

Every entire function can be expressed by a power-series 
v 

oo 

(1) /(«) = Ifnq
n 

n = 0 

with the radius of convergence R = oo. The coefficients fn fulfil the condition of 
rapid descent for n -> oo (faster than exponential): 

(2) lim IM = 0 for a > 0 . 
n-*oo CI 

Equivalently, 

(3) limV|/J-0. 
n->oo 

The descent of/„ is connected with the ascent of f(q) for q -» oo: this ascent is 
faster than polynomial (when j(q) is not itself a polynomial): 

rk 

(4) M(r) = max \f(q)\ , lim = 0 , k integer . 
\q\=r r-»oo M(r) 

Like the polynomials, the entire functions form an integrity domain for usual 
addition and multiplication. On the other side, the degree of a polynomial has no 
analogy here and Euclidean algorithm cannot be constructed. The entire functions 
are transcendental, i.e. no algebraical equation of the form 

m 

(5) !**(«)/*(«) « o 
Jt = 0 

with polynomial Pk is fulfilled. 
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A polynomial of degree n has always n zero points (respecting the multiplicity). 
An entire function can have infinity of them. The set of zero points is isolated in C, 
the only condensation point can be q = oo. However, it can be also only a finite 
number of them or no zero-point at all. The latter case arises if an only if 

(6) f(q) = e«-> 

with an entire function h(q). Such a function has an inverse 1//(<?), which is itself 
an entire function. In the polynomial domain, such a case (a divisor of unity) is 
only when f(q) is a constant. Two entire functions are called associate if they differ 
only by multiplication of a divisor of unity: 

(7) g(q)=f(q)eh^; 

it is if and only if they have the same zero-points (respecting the multiplicity). 
On the other side, given the sequence of points qt (not necessarily different) with 

the condensation point q = oo, an entire function g(q) with zero-points qt can be 
constructed: 

(8) 0(«) = n(«-«.)e*<<-> 
i = i 

where ht are appropriate polynomials — for more details, see Weierstrass' appro
ximation theorem [3]: The factors e'"(9) secure the convergence: the product con
verges absolutely and uniformly in every bounded finite domain. 

Any entire function f(q) can be expressed 
OO 

(9) f(q) = ^}n(q-qi)^
q) 

i = l 

with appropriate h(q), ht(q). The numbers qx are uniquely determined but the functions 
h(q), hi(q) are not. The factorization (9) is an analogy of a root-factor one in the 
Gaussian ring of polynomials. For entire functions, the number of root-factors 
can be infinite, the condition of finite descending chain of divisors is not fulfilled. 
However, from (9) the existence of a greatest common divisor of two entire function 
follows as well as its construction: by selecting common factors. In this sense, we 
can speak about coprime entire functions. 

The domain of entire functions is not a principal ideal domain. E.g. it can be 
easily seen that the set of functions f(q) fulfilling f(qt) = 0, given a sequence qt 

with the condensation point q = oo, up to a finite number of points, is an ideal 
but not a principal one. However, the entire functions form a Bezout domain, as 
we shall see later. 

2. MEROMORPHIC FUNCTIONS 

Meromorphic functions are generalizations of rational ones. They are defined as 
quotients of the entire ones (the quotient field). A meromorphic function f(q) is 
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analytical in C up to an isolated set of poles. The point q = oo can be an essential 
singularity. 

A rational function/(q) with a finite limit for q -> oo is called proper. Any rational 
function f(q) can be decomposed into a sum of a polynomial h(q) and a proper 
part. The latter one is determined by a finite set of poles and by a principle part 
of the Laurent series in every pole: 

(10) f(q) = h(q) + H 7-^T, • 
. = i k = i (q - qty 

For meromorphic functions, we cannot define the properness but an equivalence 
can be introduced: Two functions differ only up to an entire function if and only 
if they have the same set of poles and the same principal part of Laurent series for 
every pole. 

On the other side, given a sequence of (nonequal) points qt with condensing point 

q = oo and a sequence of functions ft(q) = Xf.fc/(q ~ qi)k> a meromorphic function 
fc=i 

f(q) can be constructed which has poles qt and the principal parts of Laurent series 
in themji(q): 

(Ц) /(«) = % ) + £ E flk 
- - - hi(q)\ uf J [fc=l (q 

where h(q) is an entire function and ht(q) polynomials for securing a convergence 
(not uniquely determined). The convergence is absolute and almost uniform, for 
more details, see the Mittag-Leffler theorem [3]. 

From these results, an existence of the decomposition 

(12) C W ._• *(<?) , y(q) 
a(q) b(q) b(q) a(q) 

follows. Here c(q), a(q), b(q) are given entire function, a(q), b(q) coprime, x(q), y(q) 
entire function searched for. Specially, the entire function equation 

(13) ax + by - 1 

with coprime a, b is solvable. When a, b are not coprime but have the greatest 
common divisor g, the expression 

(14) ax + by - g 

is valid. This important property of the entire function domain can be formulated 
as follows: Every ideal generated by two elements is principal (the Bezout domain). 

3. TWO-SIDED ENTIRE AND MEROMORPHIC FUNCTIONS 

Besides the polynomials, also "two-sided polynomials" 
k 

(15) f(q) = Y,fn<ln > h, k integer numbers, 

n=h 
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are used in the theory of discrete LQG optimal control. For them, the symmetry 

(16) / ( « ) = / ( « - ' ) 

plays a role. Similarly, the domain of two-sided entire functions can be defined. 
They are analytical in IP; the points 0, oo can be essential singularities. These func
tion have an expression 

(17) f(q) = I /„_" 
n = — oo 

with /_ rapidly descending for n —> +oo. A decomposition 

(18) f(q) = g(q) + h(q~1) 

exists with integer g, h, unique up to an additive constant. 
Let us call f(q) "with real coefficients" if /„ is real, equivalently f(q) = f(q). 

A symmetric two-sided entire function is defined (16), /„ = /_„ is valid, its zero 
points form couples qt, q^. The unique decomposition 

(19) /(_) - g(q) + g(q~1) 

exists with an entire g. For a symmetric f(q) with real coefficients it holds: f(q) 
is real for \q\ = 1. Let us call such a function positive if/(q) > 0 for \q\ = 1. 

The two-sided entire functions without zero-points (the divisors of unity) are 
of the form qk eft(9) where k is an integer number and h is a two-sided entire function. 
For a proof, see the Appendix. For a given sequence of points qt with two condensa
tion points 0, oo, a two-sided entire function with zero-points qt can be constructed: 

00 00 

(20) f(q) = qk e*<«> [ ft (q - yt) e'<<«>] [ FT ( g - i - Z |) eM,-'>-
i = l i = l 

where yu Xi a r e selected subsequences with condensation points oo, 0, respectively. 
From that, the following factorization can be derived. A two-sided entire function 

f(q) having no zero-points for \q\ — 1, can be expressed 

(21) f(q) = g(q)h(q~i) 

with entire g(q), h(q), having zero-points only in \q\ > 1. The factorization is unique 
up to multiplication by Kqk with K #= 0, k integer number. For f(q) symmetric 
and positive, a factorization 

(22) f(q) = g(q)g(q~i) 

exists with an entire function g, g(q) 4= 0 for \q\ < 1. The factorization is unique 
if we require g(q) with real coefficients, g(l) > 0. 

The quotient field for the domain of two-sided polynomials is nothing else than 
the field of rational functions. The quotient field for the domain of two-sided entire 
functions is a new object: two-sided meromorphic functions. They are analytic 
in P up to an isolated set of poles, the points 0, oo are essential singularities. 
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Among properties of these functions, the decomposition (18) of the function/(<?) 
with no poles for |q | = 1 is interesting. Here g(q), h(q) are meromorphic functions 
with poles only in |q | > 1. The decomposition is unique up to an additive constant. 
For a symmetric f(q), a unique decomposition (19) exists with meromorphic g(q). 

These results lead to the following properties of equations in entire functions. 
The equation 

(23) a(q-1)x(q) + b(q)y(q-1) = c(q) 

with entire a(q), b(q), two-sided entire c(q), where a(q~x), b(q) are coprime, is 
solvable with entire x(q), y(q). The condition y(0) = 0 makes the solution unique. 

The equation 
(24) a(q~1)x(q) + a(q) x(q~x) = c(q) 

with entire a, a(q) + 0 for |q | <. 1, with two-sided entire c having no poles for 
|q | = 1, is uniquely solvable. 

4. MEROMORPHIC SYSTEMS 

Let us consider a linear discrete system 

xn+l = Axn + Bun, 
v 

(25) yn =Cxn + Dun, n = 0 , 1 , 2 . . . 

with un eU, y„eU, xne3C where 3C is a linear space (not necessarily of finite di
mension), which is normed and complete (a Banach space). Symbols A, B, C, D 
stand for linear continuous operators 9C -*• 9C, U-* 9C, 9C -* U,U-*• U with norms 

M. 1*1. M, |x»|. 
The system response 

(26) y„ = CAnx0 + £ AH-k--Buk + Dun 
k = 0 

can be written by means of the delay operator d: 

(27) y = G(d) x0 + F(d) u 

where 

(28) G(d) = C(I - Ad)'1, F(d) = Cd(l - Ad)'1 B + D 

are the initial state operator and the transfer function. Here I is the identity operator 
3C -*• 3C. For \d\ < 1/|A||, the operator (I — Ad)'1 exists — the resolvent operator 
of A; it is continuous in 3C, it is an analytic function of d and can be expressed by 
a series 

00 

(29) ( I - Ad)'1 = Y,A"dn. 
71 = 0 

Its region of convergence can be broadened: \d\ < ljr(A) where r(A) is the spectral 

78 



rádius of A, 

(30) r(Á) = lim \\Ak\\í/k, r(A) < 
k-

Furthermore, suppose the operator A not only continuous but compact (totally 
continuous): every closed bounded set is mapped to a compact set (containing at 
least one condensation point). Tn this case, the resolvent operator is meromorphic 
[4] and so are F(d), G(d). 

From (11), we obtain the spectral decomposition of the transfer function: 

(31) F(d) = y — f 4$~ + rjd) 
v } y i=i(\ ~(dldi))m K J 

where ft(d) are polynomials, f^d) an entire function. The dynamics of the system 
is described by individual modes (exponential components), defined by numbers 
dv For \d\ > 1, the modes are stable (decreasing in time), for \dt\ < 1 unstable. 
The number of unstable modes is finite (there is no condensation point of poles 
in \dt\ < 1), that of stable ones can be infinite (the point oo may be a condensation 
point). For / -> oo, it is |t/,| -> oo, the descent in time is faster. But it is not the whole 
story: the mode/^ is also present in the dynamics; its descent is faster than exponen
tial. The decomposition (31) is not unique: f{ can be modified, compensated by 
modifying f^. By these modifications, only the beginnings (in time) of the individual 
modes are influenced, not the ends (time -*• oo). 

The transfer function can be expressed by means of entire functions 

(32) F(d) = — , a(0) = 1 , a, b coprime . 
a(d) 

Here a(d), b(d) can have an infinite number of zero-points (9). The expression (32) 
is not unique: a, b can be multiplied by a divisor of unity (6). All such expressions 
are of equal validity, no one of them appears to be more "basic" than the other. 

A special case of the system arises when r(A) = 0. Then (I — Ad)*1 is an entire 
function, in (31) only/^ is present, in (32) a(d) = 1 can be taken. 

If 3C is of finite dimension then A is always compact, E is rational, (32) is unique. 
In (31), there is only a finite number of modes, fm is a polynomial. It is evident that 
the rapidly descending mode is a generalization of the finite-time mode of rational 
systems. 

The rational systems can be expressed not only by means of the delay operator d 
but also by means of the advance operator z: 

(33) F=
bJ£> M deg/JSdega. 

a[d) oc[z) 

In this case, the finite-time mode is expressed by the pole z = 0 so that the whole 
dynamics is described in a unified way by poles or by the characteristic polynomial 
a(z). In the d-expression, the polynomial a(d) is called pseudo-characteristic. 
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For meromorphic systems, there is no expression with entire functions of z; 
the point z = 0 is essentially singular. 

5. EXAMPLES OF SYSTEMS 

Example 1. Let 3C be the space of L2-functions (square integrable) x(£) on the 
finite interval 0 ^ £ < X. It can represent e.g. a distributed electrical charge along 
a transmission line or a distributed temperature across a wall. Let the operator A 
be an integral L2-kernel: 

(34) A x(£) = f J a(fi, a) x(<x) da . 

Then A is always compact and F(d) meromorphic [4]. It is evident that the mero
morphic systems cover a very broad class of physical and technical systems. 

Example 2. Let the kernel a(£, a) in (34) be of Volterra type, i.e. a(£, a) = 0 
for £ < a. It represents e.g. the case where a signal can proceed along the transmission 
line in one direction only (forwards, not backwards). Then r(A) = 0, see [4], F(d) 
is an entire function. 

Example 3. Let a continuous rational system S(s) work in a feedback loop with 
a transport delay e~TlS, see Fig. 1. Let the whole feedback loop be controlled by 

W 
"N Ыв, 

У 

i 
) Ыв, , 

i 
) , ) 

p - т l S p - т l S 

Fig. 1. 

a discrete controller with a period T, commensurable with Tx. For its design, we need 
the discrete transfer function F(d) — Y(d)jW(d) resp. F(d,s) = Y(d, s)jW(d) where 
0 <. e < 1 is a relative shift between input and output samples. In [5], these transfer 
functions are derived by means of state space models. The state has a lumped part 
(an ordinary differential equation) as well as a distributed part (a partial differential 
equation of a transport delay). In the simplest case, S(s) = l/(T.s), T — Tl, Ti/Ti = 
= k, we have 

i _ ,*~kd 

(35) F(d) 
d 

F(d, s) 
d-Ҷl 

- de~k 

kđ) 
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nr k2 kг k* 
0 Г кd - — d2 + - dЪ - - ci4 + . . . 

*> - — 6
ť " з 

1 - d + Ы 2 - — dЪ + — ci4 . . . 
2 6 

E(rf, є) 

є tcє + ( - — kє + к) d + ( ------ + — —)d2 + 
2 / V 6 2 

1 - d + кd2 - . . . 

кhъ к2s2 к2 

6. CONTROL PROBLEMS 

Problem 1. Consider a system with a meromorphic transfer function S(d) = 
= B(d)jA(d), coprime A, B. It is controlled by a feedback controller R(d) = Y(d)jX(d) 
of the same class. A well-known method of design is pole assignment: we prescribe 
poles for the feedback system. For rational systems, we distinguish a complete 
assignment and an incomplete one. In the former case, we prescribe all modes, i.e. 
the characteristic polynomial a(z); polynomial equations in z are used. The problem 
is not always solvable, e.g. it is not possible to obtain a characteristic polynomial 
of smaller degree than that of the original system. In the incomplete assignment, 
we use polynomial equations in d, prescribe only the pseudocharacteristic polynomial 
and let the finite-time mode free. The problem is always solvable, specially a(d) = 1 
can be obtained (dead-beat). For meromorphic systems, we have only the ^/-equations. 
The assignment equation is of form (13); it is always solvable. The rapidly descending 
mode remains free: for meromorphic systems, the finite-time response cannot be 
obtained but only a rapid descent. The equation has more than one solution; it is 
not known (to the author) how to select some "minimal" one. Computational algo
rithms are not touched in this paper. 

Problem 2. (The simplest LQ problem — for simplicity, no loop stabilization is 
touched here.) Given a stable meromorphic system S(d) = B(d)jA(d), coprime entire 
A, B, we look for a stable (or on the stability boundary) input signal un, n — 0,1,2,... 
which causes the output signal yn to be as close as possible to the prescribed stable 
meromorphic function w — Q(d)jP(d), coprime entire P, Q, see Fig. 2. The criterion 

is minimization oi 
oo 

(37) I = X e2

n, e = Su - w. 

O *~ Fig. 2 

, ' " " / ' : i • • • ' ' • ' > , 

' j , 0 -is \ 
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The solution can be found by the Wiener method like for rational systems. We 
introduce an adjoint system S*(d) = S(d~^ running backward in time, which leads 
us to the two-sided functions from Section 3. The solution is 

'Fj_ 

.-~ГJ+ 
ғx = s*w, ғ2 = s*s (38) v = -L 

where the symbols G+,G~ stand for the operation of selecting the stable or the un
stable factors, and the symbol [G] + stands for the operation of selecting (from the 
two-sided sequence g„) the terms n ^ 0. With the above stability assumption, the 
problem is always solvable. 

By means of fractions with entire functions the solution process can be written: 
1) to find an entire function <P, <P(d) #= 0 for \d\ > 1 from the equation <P*<P = B*B, 
2) to find entire X, Y from the equation $*X + PY* = QB* with the condition 

Y(0) = 0, 
3) U = (AJ&). XjP with possible cancellation between A, P. 
According to Section 3, the equations are always uniquely solvable. 

APPENDIX 

Lemma. A two-sided entire function f(q) has no zero-points in P if and only 
if it can be expressed f(q) = qk eh(-q) where k is an integer number and h(q) is a two-
sided entire function. 

Proof. Let/(q) = qk eh{q), it is evident that is has no zero-points in P. Conversely, 
let f(q) has no zero-points in P. Its derivative f'(q) is also two-sided entire and so 
is f'(q)lf(q). Let k denote the coefficient for ljq in the Laurent series of f'(q)jf(q) 
in P. The function f'(q)jf(q) — kjq is two-sided entire and has a primitive function 
in P, also two-sided entire. It is h(q) = ln(q~kf(qj) as can be easily seen. From 
that, f(q) = qkeKq). We prove that k is an integer number: q~k = eh{q)jf(q) should 
be two-sided entire, it is possible only for integer k. 

(Received July 22, 1988.) 
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