Kybernetika

Ludvík Prouza

On a detection method for known finite sequences

Kybernetika, Vol. 14 (1978), No. 6, (421)--428
Persistent URL: http://dml.cz/dmlcz/124272

Terms of use:

© Institute of Information Theory and Automation AS CR, 1978
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

KYBERNETIKA - VOLUME 14 (1978). NUMBER 6

 On a Detection Method for Known

 On a Detection Method for Known Finite Sequences

Ludvík Prouza

A method of detection of known finite-sequence signals is investigated possessing the CFAR (constant false alarm rate) property.

1. INTRODUCTION

Let a signal be represented by a real finite sequence $\left\{b_{0}, \ldots, b_{h}\right\}, h$ given, $b_{0} \neq 0$, $b_{h} \neq 0$, let $\left\{a_{0}, \ldots, a_{N}\right\}\left(N \geqq h, a_{0} \neq 0, a_{N} \neq 0\right)$ be the weighting sequence of the respective inversion filter (e.g. matched or minimum mean square error, [1]), let T $(0 \leqq T \leqq N+h)$ be given [1]. Then using in the receiver a simple averaging CFAR circuit is not justified.

In what follows, another method of CFAR detection will be investigated.

2. FUNDAMENTAL RELATIONS

At the receiver, the sequence $\left\{b_{0}, \ldots, b_{h}\right\}$ is corrupted by noise, so that it is $\left\{y_{0}, \ldots, y_{h}\right\}$.
Let the output of the inversion filter in the ideal case be

$$
\begin{align*}
\alpha c_{0} & =\alpha b_{0} a_{0} \tag{1}\\
\alpha c_{1} & =\alpha\left(b_{1} a_{0}+b_{0} a_{1}\right), \\
& \vdots
\end{align*}
$$

α being an arbitrary coefficient. In the nonideal case, there is

$$
\begin{equation*}
C_{0}=y_{0} a_{0}, \tag{2}
\end{equation*}
$$

$$
C_{1}=y_{1} a_{0}+y_{0} a_{1}
$$

Now, one will seek α so that

$$
\begin{equation*}
\sum_{i=0}^{N+h}\left(\alpha c_{i}-C_{i}\right)^{2}=\min \tag{3}
\end{equation*}
$$

One finds

$$
\begin{equation*}
\alpha=\frac{\sum_{i=0}^{N+h} c_{i} C_{i}}{\sum_{i=0}^{N+h} c_{i}^{2}} \tag{4}
\end{equation*}
$$

and from (3), (4) one obtains

$$
\begin{equation*}
\min _{\alpha} \frac{\sum\left(\alpha c_{i}-C_{i}\right)^{2}}{\sum C_{i}^{2}}=1-\frac{\left(\sum c_{i} C_{i}\right)^{2}}{\sum c_{i}^{2} \cdot \sum C_{i}^{2}} \geqq 0 \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
1 \geqq \frac{\left(\sum c_{i} C_{i}\right)^{2}}{\sum c_{i}^{2} \cdot \sum C_{i}^{2}} \geqq 1-\frac{\sum\left(\alpha c_{i}-C_{i}\right)^{2}}{\sum C_{i}^{2}} \tag{6}
\end{equation*}
$$

The left inequality follows immediately from the Cauchy inequality. Moreover, there follows from the same inequality that the equality holds precisely if $C_{i}=\beta c_{i}$ ($i=0, \ldots, N+h$) , $\beta \neq 0$ being arbitrary.
Thus, one sees that the middle term in (6) can be used for detection and that it possesses the CFAR property.

3. SOME SIMPLIFYING SUPPOSITIONS

In what follows we will suppose that for a given $T, c_{T} \gg c_{i}(i \neq T)$. E.g. for the minimum mean square inversion filter, there is [1]

$$
\begin{equation*}
\sum_{i=0}^{N+h} c_{i}^{2}=c_{T} \tag{7}
\end{equation*}
$$

and $c_{T} \doteq 1$.
With this supposition, we neglect in (6) all c_{i} 's for $i \neq T$, and obtain

$$
\begin{equation*}
0 \leqq \frac{C_{T}^{2}}{\sum_{i=0}^{N+h} C_{i}^{2}} \leqq 1 . \tag{8}
\end{equation*}
$$

This expression is much simpler than that in (6), but it may be expected to retain its properties.

Suppose further that the input noise of the inversion filter is a white Gaussian sequence $N(0, \sigma)$. The output sequence of the filter is also Gaussian but not white. Denoting it $\left\{\eta_{n}\right\}$, one finds the autocorrelation

$$
\begin{equation*}
\varrho\left(\eta_{n} \eta_{n+k}\right)=\frac{\boldsymbol{E}\left(\eta_{n} \eta_{n+k}\right)}{\boldsymbol{E}\left(\eta_{n}\right)^{2}}=\frac{a_{0} a_{k}+\ldots+a_{N-k} a_{N}}{\sum_{i=0}^{N} a_{i}^{2}} . \tag{9}
\end{equation*}
$$

One will now suppose that a "good" sequence $\left\{b_{0}, \ldots, b_{h}\right\}$ is "practically uncorrelated". Then, the sequence $\left\{a_{0}, \ldots, a_{N}\right\}$ is also "practically uncorrelated". Thus from (9), the output of the inversion filter is "practically independent".

4. THE DISTRIBUTION OF $C_{T}^{2} / \sum C_{i}^{2}$ UNDER SIMPLIFYING SUPPOSITIONS

There is

$$
\begin{equation*}
C_{T}^{2} / \sum C_{i}^{2}<Z<1 \tag{10}
\end{equation*}
$$

the same as
(11) $\quad C_{T}^{2} /\left(C_{0}^{2}+\ldots+C_{T-1}^{2}+C_{T+1}^{2}+\ldots+C_{N+h}^{2}\right)<Z /(1-Z)$,
Z being a threshold. For the noise alone, the random variables in (11) are independent $N(0, \sigma)$. Then, (11) is equivalent to

$$
\begin{equation*}
\chi_{1}^{2}(1) / \chi_{2}^{2}(N+h)<Z /(1-Z), \tag{12}
\end{equation*}
$$

that is to

$$
\begin{equation*}
\mathscr{F}(1, N+h)<(N+h) Z /(1-Z) \tag{13}
\end{equation*}
$$

where the random variable at the left posseses the F-distribution. Denoting γ the critical value to P_{f}, a given probability of false alarm, one obtains for the threshold Z

$$
\begin{equation*}
Z=\gamma /(\gamma+N+h) \tag{14}
\end{equation*}
$$

Further, supposing that the noise is additive, one has in the case of signal plus noise:

$$
\begin{equation*}
C_{T} / \sigma \cdot \sqrt{\sum a_{i}^{2}} \text { is } \quad N\left(c_{T} / \sigma \cdot \sqrt{\left.\sum a_{i}^{2}, 1\right)}\right. \tag{15}
\end{equation*}
$$

and for $i \neq T$

$$
\begin{equation*}
C_{i} / \sigma \cdot \sqrt{\sum a_{i}^{2}} \text { is } \quad N(0,1) \tag{16}
\end{equation*}
$$

(17) $1-P_{d}=P\left(C_{T}^{2}<\frac{Z}{1-Z}\left(C_{0}^{2}+\ldots+C_{T-1}^{2}+C_{T}^{2}+\ldots+C_{N+h}^{2}\right)\right)$.

For this probability, no standard tables exist.
Let an arbitrary $y>0$ be given. Then, clearly, the probability density of the second member of the inequality in (17) is

$$
\begin{equation*}
f(y)=\frac{1-Z}{Z} \cdot \frac{\left(\frac{1-Z}{Z} \cdot y\right)^{((N+h) / 2)-1} \cdot \mathrm{e}^{-(1-Z) y / 2 \mathrm{Z}}}{2^{((N+h) / 2)} \cdot \Gamma\left(\frac{N+h}{2}\right)} \tag{18}
\end{equation*}
$$

Further

$$
\begin{equation*}
P\left(\frac{C_{T}^{2}}{\sigma^{2} \sum a_{i}^{2}}<y\right)=g(y)=\frac{1}{\sqrt{2} \pi} \int \mathrm{e}^{-t^{2} / 2} \mathrm{~d} t \tag{19}
\end{equation*}
$$

where the integration interval at the right is

$$
\begin{equation*}
\left\langle-\sqrt{y}-\frac{c_{T}}{\sigma \sqrt{\sum a_{i}^{2}}}, \quad \sqrt{ } y-\frac{c_{T}}{\sigma \sqrt{\sum a_{i}^{2}}}\right\rangle \tag{20}
\end{equation*}
$$

Finally,
(21)

$$
1-P_{\mathfrak{a}}=\int_{0}^{\infty} f(y) g(y) \mathrm{d} y
$$

have been computed by numerical integration for various values of the input signal/noise ratio

$$
\begin{equation*}
s / n=\sum_{i=0}^{h} b_{i}^{2} / \sigma^{2}(h+1) \tag{22}
\end{equation*}
$$

5. EXAMPLES

Example 1. Let $\left\{b_{0}, b_{1}, b_{2}\right\}=\{1,1,-1\}$ be the known Barker sequence. Let

$$
\begin{equation*}
\left\{a_{0}, \ldots, a_{6}\right\}=\{-1,1,-2,3,2,1,1\} \tag{23}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\left\{c_{0}, \ldots, c_{8}\right\}=\{-1,0,0,0,7,0,0,0,-1\} \tag{24}
\end{equation*}
$$

From (9)

$$
\begin{equation*}
\left\{\varrho_{0}, \ldots, \varrho_{6}\right\}=\{1 ; 0 ; 0.3 ; 0 ;-0.15 ; 0 ;-0.05\} \tag{25}
\end{equation*}
$$

so that we adopt the supposition of independence of C_{i} 's.

Let $P_{f}=0.01$ be justified by the subsequent second-threshold evaluation of repeated signal sequences. Then, from the table of the F-distribution [2]

$$
\begin{equation*}
Z=\frac{11 \cdot 3}{11 \cdot 3+8}=0 \cdot 58 \tag{26}
\end{equation*}
$$

Now, the results of computing (21) are in Table 1.

Table 1.

$s / n(\mathrm{~dB})$	σ^{2}	$1-P_{d}$	P_{d}	$P_{d c}$
3	1	0.91	0.09	0.20
6	$\frac{1}{2}$	0.79	0.21	0.45
9	$\frac{1}{4}$	0.55	0.45	0.81
12	$\frac{1}{8}$	0.20	0.80	0.99
	$\frac{1}{16}$	0.01	0.99	1.00

The sense of the last column will be explained later.

Example 2. Let

(27)

$$
\left\{b_{0}, \ldots, b_{10}\right\}=\{1,1,1,1,1,-1,-1,1,-1,1,-1\}
$$

be the known Golay-Schroeder sequence. Let for the corresponding inversion filter (normalized $\times 1000$)
(28) $\left\{a_{0}, \ldots, a_{30}\right\}=\{-7,0,-2,22,-14,-8,-13,22,25,-5,-87$,

$$
\begin{gathered}
62,-18,139,-118,-154,118,139,18,62,87,-5,-25,22,13 \\
-8,14,22,2,0,7\}
\end{gathered}
$$

One may find $c_{20}=0.999$, other c_{i} 's will not be published here, but (normalizing \times $\times 100$)
(29)

$$
\left\{\varrho_{0}, \ldots, \varrho_{30}\right\}=
$$

$$
=\{100,0,-32,0,17,0,0,0,2,0,8,0,-4,0,2, \text { all } 0 ' s\}
$$

Further,

$$
\begin{equation*}
Z=\frac{7.31}{7.31+40}=0.154 \tag{30}
\end{equation*}
$$

and from (28), $\sum a_{i}^{2}=0 \cdot 11788$. As in the preceding example, Table 2 has been computed:

Table 2.

$\sin (\mathrm{dB})$	σ^{2}	$1-P_{d}$	P_{d}	$P_{d c}$
-6	4	0.88	0.12	0.18
-3	2	0.72	0.28	0.41
0	1	0.41	0.59	0.77
3	$\frac{1}{2}$	0.08	0.92	0.98
6	$\frac{1}{4}$	0.00	1.00	1.00

The values in the last columns in both tables have been computed for a pulse signal of the same height and length as the respective sequences, for $P_{f}=0.01$ and a fixed threshold, and for the absolute value of signal plus Gaussian noise exceeding the threshold.

The loss of the signal/noise ratio of both inversion filters compared with the matched ones is about $1 \cdot 1 \mathrm{~dB}$, so that the net loss of the detection method (computing with the simplifying suppositions) is about 2 dB in the first example and about 0.3 dB in the second one.

6. RESULTS OF SIMULATION

To see the influence of the simplifying suppositions, the detection with the aid of (8) has been simulated for both examples of the preceding section. The frequencies of 100 experiments are contained in Tables 3 and 4 for various signal/noise ratios.

Table 3.

	$s / n(\mathrm{~dB})$					
	$-\infty$	0	3	6	9	12
< $0-0.20\rangle$	82	43	24	3	0	0
(0.20-0.40>	14	34	32	20	4	0
($0.40-0.60$)	3	18	25	39	18	1
($0 \cdot 60-0 \cdot 80$)	1	4	19	33	55	46
(0.80-1)	0	1	0	5	23	53

Table 4.

	$\sin (\mathrm{dB})$					
	$-\infty$	-6	-3	0	3	6
$\langle 0-0 \cdot 15\rangle$	100	79	63	36	7	0
$(0 \cdot 15-0 \cdot 30\rangle$	0	19	31	42	38	7
$(0 \cdot 30-0 \cdot 45\rangle$	0	2	6	20	48	36
$(0 \cdot 45-0 \cdot 60\rangle$	0	0	0	2	7	50
$(0 \cdot 60-0.75\rangle$	0	0	0	0	0	7
$(0,75-1\rangle$	0	0	0	0	0	0

The frequencies above 0.60 in the first case and above 0.15 in the second one show a very good agreement of simplified calculation and simulation in the first case and a good agreement (on the 95% confidence level) in the second one.

7. ANOTHER WAY HOW TO ARRIVE AT THE MATCHED FILTER

Consider the situation where in contrast to the introduction no inversion filter is used and instead of (3) one postulates

$$
\begin{equation*}
\sum_{i=0}^{h}\left(\alpha b_{i}-y_{i}\right)^{2}=\min . \tag{31}
\end{equation*}
$$

One finds easily that instead of the expression in the middle of (6) the expression

$$
\begin{equation*}
0 \leqq \frac{\left(\sum b_{i} y_{i}\right)^{2}}{\sum b_{i}^{2} \sum y_{i}^{2}} \leqq 1 \tag{32}
\end{equation*}
$$

may be used for detection. One sees that the sum in the numerator is formed from $\left\{y_{i}\right\}$ by a linear filter with the weighting sequence

$$
\begin{equation*}
\left\{w_{h-i}\right\}=\left\{b_{i}\right\} \tag{33}
\end{equation*}
$$

i.e. by the matched filter. The inequalities in (32) follow from the Cauchy inequality• Moreover, with the normalization $\sum b_{i}^{2}=1$,

$$
\begin{equation*}
\varrho\left(\sum b_{i} y_{i}, y_{j}\right)=b_{j} \tag{34}
\end{equation*}
$$

so that the mathematical treatment of (32) seems to be somewhat more difficult than that of (8).

For longer sequences, the method described in the preceding sections may be modified, e.g. by considering only a part of summands in the denominator in (8). An extension to complex sequences is straightforward, with a generalized Siebert CFAR detector resulting.

ACKNOWLEDGEMENT

For general programs and the computations and simulations on a computer, the author is indebted to Ing. J. Beneš, CSc.
(Received May 12, 1978.)

REFERENCES

[1] L. Prouza: On the Inversion of Moving Averages, Linear Discrete Equalizers and "Whitening" Filters, and Series Summability. Kybernetika 6 (1970) 3, 225-239.
[2] J. Janko: Statistical Tables. (In Czech.) NČSAV, Prague 1958.
RNDr. Ludvik Prouza, DrSc., Tesla-Ústav pro výzkum radiotechniky (Institute of Radioengineering), Opočinek, 53331 p. Lány na Důlku. Czechoslovakia.

